Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 805
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(5): 1145-1158.e20, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31402173

RESUMEN

While Mediator plays a key role in eukaryotic transcription, little is known about its mechanism of action. This study combines CRISPR-Cas9 genetic screens, degron assays, Hi-C, and cryoelectron microscopy (cryo-EM) to dissect the function and structure of mammalian Mediator (mMED). Deletion analyses in B, T, and embryonic stem cells (ESC) identified a core of essential subunits required for Pol II recruitment genome-wide. Conversely, loss of non-essential subunits mostly affects promoters linked to multiple enhancers. Contrary to current models, however, mMED and Pol II are dispensable to physically tether regulatory DNA, a topological activity requiring architectural proteins. Cryo-EM analysis revealed a conserved core, with non-essential subunits increasing structural complexity of the tail module, a primary transcription factor target. Changes in tail structure markedly increase Pol II and kinase module interactions. We propose that Mediator's structural pliability enables it to integrate and transmit regulatory signals and act as a functional, rather than an architectural bridge, between promoters and enhancers.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón , Elementos de Facilitación Genéticos , Edición Génica , Humanos , Masculino , Complejo Mediador/química , Complejo Mediador/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Estructura Cuaternaria de Proteína , ARN Polimerasa II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
2.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38640930

RESUMEN

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Asunto(s)
Hidroxicolesteroles , Lisosomas , Macrófagos , Microambiente Tumoral , Animales , Hidroxicolesteroles/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Microambiente Tumoral/inmunología , Factor de Transcripción STAT6/metabolismo , Adenilato Quinasa/metabolismo , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Reprogramación Metabólica
3.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29706548

RESUMEN

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genoma , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN , Humanos , Ratones , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
4.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28735753

RESUMEN

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Asunto(s)
Fragilidad Cromosómica , Roturas del ADN de Doble Cadena , Neoplasias/genética , Animales , Linfocitos B/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Represoras/metabolismo
5.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985562

RESUMEN

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Genoma Humano , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Código de Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , Cohesinas
6.
Nature ; 615(7954): 907-912, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949194

RESUMEN

Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcµR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcµR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcµR molecules interact with a Fcµ-Cµ4 dimer, suggesting that FcµR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcµR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcµR molecules to bind on the same side and thereby facilitate the formation of an FcµR oligomer. One of these FcµR molecules occupies the binding site of the secretory component. Nevertheless, four FcµR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcµR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcµR.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Inmunoglobulina M , Proteínas de la Membrana , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Inmunoglobulina M/química , Inmunoglobulina M/metabolismo , Inmunoglobulina M/ultraestructura , Mamíferos , Unión Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/ultraestructura , Componente Secretorio/química , Componente Secretorio/metabolismo , Componente Secretorio/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/ultraestructura
8.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194459

RESUMEN

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina A Secretora , Animales , Ratones , Humanos , Inmunoglobulina G , Inmunoglobulina A , Administración Intranasal , Ratones Transgénicos
9.
Plant Cell ; 34(8): 2907-2924, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543486

RESUMEN

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Tics , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
10.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803781

RESUMEN

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Asunto(s)
Linfocitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Activación de Linfocitos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/inmunología , Línea Celular , Cromatina/química , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Genotipo , Histonas/química , Inmunidad Humoral , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación de Ácido Nucleico , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Imagen Individual de Molécula , Relación Estructura-Actividad , Factores de Tiempo , Transcripción Genética
11.
Osteoporos Int ; 35(3): 523-531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37947843

RESUMEN

Most studies investigating the association between physical activity and osteoporosis prevention only focused on specific types of physical activity. This study's evidence regarding the combined effects or interaction of sleep duration and physical activity. The findings emphasize the role of sleep duration and physical activity in association with osteoporosis. PURPOSE: The associations between physical activity, sleep duration, and prevalent osteoporosis in Taiwanese adults were studied in this cross-sectional study. METHODS: The Taiwan Biobank enrolled a community-based cohort of ~ 120,000 volunteers (as of April 30, 2020) between 30 and 76 years of age with no history of cancer. Amongst, bone mineral density (BMD) measures by dual-energy X-ray absorptiometry (DXA) were available in 22,402 participants. After excluding individuals who had no complete data of BMI (n = 23), MET score (n = 207), T-score (n = 8,826), and sleep duration (n = 16), 13,330 subjects were included as the primary cohort. Univariate and multivariable regression analyses were performed to determine the associations between the presence of osteoporosis, physical activity level, sleep duration, and other variables. RESULTS: The results showed that after adjustment, subjects with physical activity < 20 METs/week and ≥ 20 METs/week (aOR = 1.017 and 0.767, respectively) were associated with risk of osteoporosis than those with zero MET. The odds of osteoporosis were not significantly lower in subjects who slept for ≥ 8 h/day (aOR = 0.934,p=0.266). In addition, compared to short sleepers with no physical activity, adults with increased physical activity ≥ 20 METs/week and sleep ≥ 8 h/day had a significantly lowest likelihood of osteoporosis (aOR = 0.702). Those with medium physical activity (< 20 METs/week) plus average sleep duration (6.5-8 h/day) did not have significant higher odds of osteoporosis (aOR = 1.129,p=0.151). CONCLUSION: The findings emphasize the joint role of sleep duration and physical activity in association with osteoporosis. Adults with high physical activity plus high sleep hours have the highest BMD and lowest risk of osteoporosis.


Asunto(s)
Osteoporosis , Duración del Sueño , Adulto , Humanos , Taiwán/epidemiología , Estudios Transversales , Bancos de Muestras Biológicas , Osteoporosis/etiología , Osteoporosis/complicaciones , Densidad Ósea , Absorciometría de Fotón , Ejercicio Físico
12.
Cell Commun Signal ; 22(1): 71, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279122

RESUMEN

Integrinß-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.


Asunto(s)
Integrina beta1 , Neoplasias , Línea Celular Tumoral , Integrina beta1/metabolismo , Transducción de Señal , Proteínas Portadoras , Neoplasias/terapia
13.
World J Urol ; 42(1): 148, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478056

RESUMEN

OBJECTIVE: To assess the clinical efficacy of laparoscopic Lich-Gregoir (LLG) and transvesicoscopic Cohen reimplantation (TCR) in the treatment of vesicoureteral junction obstruction (VUJO) and vesicoureteral reflux (VUR). METHODS: This study retrospectively analyzed the clinical data of 66 pediatric patients with VUJO and VUR. They were classified into two groups, undergoing either the laparoscopic Lich-Gregoir operation (LLGO) (n = 35) or transvesicoscopic Cohen reimplantation operation (TCRO) (n = 31). The surgeries were performed between April 2018 and September 2022 at the First Affiliated Hospital of Guangxi Medical University, China. General characteristics, preoperative attributes, postoperative complications, renal function recovery, and improvement of hydronephrosis were compared between the two groups. RESULTS: All surgical procedures were successful with no requirement for reoperation. Both groups were comparable with respect to gender, affected side, weight, and postoperative complications. Nonetheless, the LLGO group contained a greater number of children younger than 12 months. The LLGO group demonstrated superiority over the TCRO group regarding the duration of the operation, intraoperative blood loss, and length of postoperative hospital stay. In contrast, postoperative complications, recovery of renal function, and hydronephrosis improvement did not exhibit statistically significant differences between the two groups. CONCLUSION: Both LLGO and TCRO were demonstrated to be precise, safe, and reliable surgical methods for treating pediatric VUJO and VUR. LLGO ureteral reimplantation offers particular advantages in selecting cases and appears more suitable for children younger than 12 months who have a small bladder capacity.


Asunto(s)
Hidronefrosis , Laparoscopía , Uréter , Reflujo Vesicoureteral , Niño , Humanos , Estudios Retrospectivos , Procedimientos Quirúrgicos Urológicos/métodos , China , Uréter/cirugía , Reflujo Vesicoureteral/cirugía , Resultado del Tratamiento , Laparoscopía/métodos , Reimplantación/métodos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/cirugía , Hidronefrosis/cirugía
14.
Fish Shellfish Immunol ; 151: 109666, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838839

RESUMEN

The advancement of the Penaeus vannamei industry in a sustainable manner necessitates the creation of eco-friendly and exceptionally effective feed additives. To achieve this, 720 similarly-sized juvenile shrimp (0.88 ± 0.02 g) were randomly divided into four groups in this study, with each group consisting of three replicates, each tank (400 L) containing 60 shrimp. Four experimental diets were formulated by adding 0, 500, 1000, and 1500 mg kg-1 glycerol monolaurate (GML) to the basal diet, and the feeding trial lasted for 42 days. Subsequently, a 72-h White Spot Syndrome Virus (WSSV) challenge test was conducted. Polynomial orthogonal contrasts analysis revealed that with the increase in the concentration of GML, those indicators related to growth, metabolism and immunity, exhibit linear or quadratic correlations (P < 0.05). The results indicate that the GML groups exhibited a significant improvement in the shrimp weight gain rate, specific growth rate, and a reduction in the feed conversion ratio (P < 0.05). Furthermore, the GML groups promoted the lipase activity and reduced lipid content of the shrimp, augmented the expression of triglyceride and fatty acid decomposition-related genes and lowered the levels of plasma triglycerides (P < 0.05). GML can also enhanced the humoral immunity of the shrimp by activating the Toll-like receptor and Immune deficiency immune pathways, improved the phagocytic capacity and antibacterial ability of shrimp hemocytes. The challenge test revealed that GML significantly reduced the mortality of the shrimp compared to control group. The 16S rRNA sequencing indicates that the GML group can increases the abundance of beneficial bacteria. However, 1500 mg kg-1 GML adversely affected the stability of the intestinal microbiota, significantly upregulating intestinal antimicrobial peptide-related genes and tumor necrosis factor-alpha levels (P < 0.05). In summary, 1000 mg kg-1 GML was proven to enhance the growth performance, lipid absorption and metabolism, humoral immune response, and gut microbiota condition of P. vannamei, with no negative physiological effects.

15.
Nanotechnology ; 35(33)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759633

RESUMEN

The significant volume change experienced by silicon (Si) anodes during lithiation/delithiation cycles often triggers mechanical-electrochemical failures, undermining their utility in high-energy-density lithium-ion batteries (LIBs). Herein, we propose a sub micro-nano-structured Si based material to address the persistent challenge of mechanic-electrochemical coupling issue during cycling. The mesoporous Si-based composite submicrospheres (M-Si/SiO2/CS) with a high Si/SiO2content of 84.6 wt.% is prepared by magnesiothermic reduction of mesoporous SiO2submicrospheres followed by carbon coating process. M-Si/SiO2/CS anode can maintain a high specific capacity of 740 mAh g-1at 0.5 A g-1after 100 cycles with a lower electrode thickness swelling rate of 63%, and exhibits a good long-term cycling stability of 570 mAh g-1at 1 A g-1after 250 cycles. This remarkable Li-storage performance can be attributed to the synergistic effects of the hierarchical structure and SiO2frameworks. The spherical structure mitigates stress/strain caused by the lithiation/delithiation, while the internal mesopores provide buffer space for Si expansion and obviously shorten the diffusion path for electrolyte/ions. Additionally, the amorphous SiO2matrix not only servers as support for structure stability, but also facilitates the rapid formation of a stable solid electrolyte interphase layer. This unique architecture offers a potential model for designing high-performance Si-based anode for LIBs.

16.
BMC Psychiatry ; 24(1): 468, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918741

RESUMEN

INTRODUCTION: Children and adolescents, after natural and man-made disasters, often exhibit various psychological, emotional, and behavioral issues, showing a range of clinical symptoms related to post-traumatic stress disorder (PTSD) and depression. This review used a network meta-analysis (NMA) approach to compare and rank psychological interventions for PTSD and depression in children and adolescents after exposure to natural and man-made disasters. METHODS: Randomized studies of psychosocial interventions for PTSD and depression in children and adolescents exposed to natural and man-made disasters were identified. PTSD and depression symptoms at postintervention and 1-12 month follow-up are the outcomes. The standardized mean differences (SMDs) between pairs of interventions at postintervention and follow-up were pooled. Mean effect sizes with 95% credible intervals (CI) were calculated, and the ranking probabilities for all interventions were estimated using the surface under the cumulative ranking curve. Study quality was assessed with version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB 2). RESULTS: In total, 26 studies with 4331 participants were included in this NMA. Eye movement desensitization and reprocessing therapy (EMDR) (SMD = - 0.67; 95% CI - 1.17 to - 0.17), exposure therapy (ET) (SMD = - 0.66; 95% CI - 1.11 to - 0.22), and cognitive behavioral therapy (CBT) (SMD = - 0.62; 95% CI - 0.90 to - 0.34) were significantly more effective for PTSD at postintervention than inactive intervention. EMDR (SMD = - 0.72; 95% CI - 1.11 to - 0.33) and ET (SMD = - 0.62; 95% CI - 0.97 to - 0.27) were associated with a higher reduction in PTSD symptoms at follow-up than inactive intervention. EMDR (SMD = - 0.40; 95% CI - 0.78 to - 0.03) and play therapy (PT) (SMD = - 0.37; 95% CI - 0.62 to - 0.12) were significantly more effective for depression at postintervention than inactive intervention. For all psychological interventions in reducing depression symptoms at follow-up compared with inactive intervention, the differences were not significant. CONCLUSION: EMDR appears to be most effective in reducing PTSD and depression in children and adolescents exposed to natural and man-made disasters. In addition, ET and CBT are potentially effective in reducing PTSD symptoms at postintervention, while PT is beneficial in managing depression symptoms at the treatment endpoint.


Asunto(s)
Desastres , Desensibilización y Reprocesamiento del Movimiento Ocular , Metaanálisis en Red , Intervención Psicosocial , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/terapia , Trastornos por Estrés Postraumático/psicología , Adolescente , Niño , Intervención Psicosocial/métodos , Desensibilización y Reprocesamiento del Movimiento Ocular/métodos , Depresión/terapia , Depresión/psicología , Desastres Naturales , Ensayos Clínicos Controlados Aleatorios como Asunto , Terapia Cognitivo-Conductual/métodos
17.
Fam Pract ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38423070

RESUMEN

BACKGROUND: The effects of integrated care with case management and nutritional counselling for frail patients with nutritional risk are unclear. OBJECTIVES: To assess the impact of the integrated care model for frail patients with nutritional risk in the primary care setting. METHODS: This was a retrospective observational study. We enrolled 100 prefrail or frail patients according to Clinical Frailty Scale (CFS) aged ≥ 60 years with nutritional risk from the geriatric clinic. We implemented the frailty intervention model, including integrated care with comprehensive geriatric assessments (CGA), case management, and nutritional counselling by the dietitian. We obtained measures of CGA components, physical performance, body mass index (BMI), and daily caloric intake before and after the 2-month care program. We used the Wilcoxon signed-rank test to analyse differences after the care program and applied multiple linear regression to determine the predictive factors for CFS improvement. RESULTS: Among the 100 patients (mean age, 75.0 ±â€…7.2 years; females, 71.0%; frail patients, 26%), 93% improved their CFS status, and 91% achieved > 80% of recommended daily caloric intake after the care program. The Mini Nutritional Assessment Short-Form significantly improved after the program. BMI and daily caloric intake increased significantly after nutritional counselling. The post-test short physical performance battery (SPPB) significantly increased with a faster 4 m gait speed. Baseline poor CFS was a significant predictor for CFS improvement. CONCLUSIONS: Integrated care with case management and nutritional counselling for prefrail and frail patients with nutritional risk in the primary care setting may improve physical performance and nutritional status.


Frailty, a state of vulnerability in older adults, can lead to various health issues. Early intervention in poor nutrition can be beneficial in managing frailty. Integrated care with comprehensive assessments has demonstrated its effectiveness in managing frail older adults. However, there are limited models designed for primary care, and nutritional intervention alone may not be adequate. This retrospective observational study, conducted in a specialized primary care unit for geriatric patients, enrolled prefrail and frail individuals at nutritional risk. A multidisciplinary team implemented an integrated care model that included comprehensive geriatric assessments, case management, and nutritional counselling. After the care program, a significant majority of patients exhibited improved Clinical Frailty Scale status, along with a high proportion achieving 80% of their recommended daily caloric intake. The study also revealed improved physical performance measured by the Short Physical Performance Battery, and a faster 4 m gait speed. Additionally, both BMI and daily caloric intake significantly increased after nutritional counselling. These findings highlight the positive impact of integrated care, including comprehensive assessments, case management, and nutritional counselling, on the physical performance and nutritional status of prefrail and frail older adults.

18.
Anim Biotechnol ; 35(1): 2314100, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38343377

RESUMEN

Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.


Asunto(s)
FN-kappa B , Triterpenos Pentacíclicos , Proteínas Proto-Oncogénicas c-akt , Femenino , Bovinos , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Activación Transcripcional , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Epiteliales/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología
19.
Pain Manag Nurs ; 25(1): 34-45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37268491

RESUMEN

OBJECTIVES: To assess the effectiveness of cold therapy for pain and anxiety associated with chest tube removal. DESIGN: A Systematic review and meta-analysis of randomized controlled trials. DATA SOURCES: Articles were searched from Cochrane Library, PubMed, Embase, CINAHL, ProQuest, Airiti Library, China National Knowledge Infrastructure, and the National Digital Library of Theses and Dissertations in Taiwan. REVIEW/ANALYSIS METHODS: Eight electronic databases were searched from inception to August 20, 2022. The Cochrane Risk of Bias 2.0 tool was used to assess the quality of the included studies. Using a random-effects model, we calculated Hedges' g and its associated confidence interval to evaluate the effects of cold therapy. Cochrane's Q test and an I2 test were used to detect heterogeneity, and moderator and meta-regression analyses were conducted to explore possible sources of heterogeneity. Publication bias was assessed using a funnel plot, Egger's test, and trim-and-fill analysis. RESULTS: We examined 24 trials involving 1,821 patients. Cold therapy significantly reduced pain during and after chest tube removal as well as anxiety after chest tube removal (Hedges' g: -1.28, -1.27, and -1.80, respectively). Additionally, the effect size of cold therapy for reducing anxiety after chest tube removal was significantly and positively associated with that of cold therapy for reducing pain after chest tube removal. CONCLUSIONS: Cold therapy can reduce pain and anxiety associated with chest tube removal.


Asunto(s)
Tubos Torácicos , Dolor , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Ansiedad/terapia , Crioterapia
20.
Environ Toxicol ; 39(6): 3283-3291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380842

RESUMEN

Rheumatoid arthritis (RA) is a well-known autoimmune disorder related with joint pain, joint swelling, cartilage and bone degradation as well as deformity. Fibroblast growth factor 23 (FGF23) is an endocrine factor of the FGF family primarily produced by osteocytes and osteoblasts, involves an essential effect in pathogenesis of RA. IL-1ß is a vital proinflammatory factor in the development of RA. However, the role of FGF23 on IL-1ß synthesis in RA has not been fully explored. Our analysis of database revealed higher levels of FGF23 and IL-1ß in RA samples compared with healthy controls. High-throughput screening demonstrated that IL-1ß is a potential candidate factor after FGF23 treatment in RA synovial fibroblasts (RASFs). FGF23 concentration dependently promotes IL-1ß synthesis in RASFs. FGF23 enhances IL-1ß expression by activating the PI3K, Akt, and NF-κB pathways. Our findings support the notion that FGF23 is a promising target in the remedy of RA.


Asunto(s)
Artritis Reumatoide , Factor-23 de Crecimiento de Fibroblastos , Fibroblastos , Interleucina-1beta , Transducción de Señal , Femenino , Humanos , Masculino , Artritis Reumatoide/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA