Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; : e0085024, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046242

RESUMEN

The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in Helicobacter pylori remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of H. pylori when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant H. pylori strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the hp0560-hp0557 operon regulated by Sigma28 (σ28). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of H. pylori. Our findings reveal a novel adaptive strategy employed by H. pylori to withstand antibiotic stress.

2.
Antimicrob Agents Chemother ; 68(4): e0167923, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38386782

RESUMEN

The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , ADN Bacteriano/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33649116

RESUMEN

Recently, there is increased incidence of drug-resistant Helicobacter pylori infection. Biofilm formation confers multidrug resistance to bacteria. Moreover, it has been found that the formation of biofilm on the surface of gastric mucosa is an important reason for the difficulty of eradication of H. pylori The mechanisms underlying H. pylori biofilm formation in vivo have not been elucidated. Reactive oxygen species (ROS) released by the host immune cells in response to H. pylori infection cannot effectively clear the pathogen. Moreover, the extracellular matrix of the biofilm protects the bacteria against ROS-mediated toxicity. This study hypothesized that ROS can promote H. pylori biofilm formation and treatment with low concentrations of hydrogen peroxide (H2O2) promoted this process in vitro The comparative transcriptome analysis of planktonic and biofilm-forming cells revealed that the expression of SpoT, a (p)ppGpp (guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate) synthetase/hydrolase, is upregulated in H2O2-induced biofilms and that knockout of spoT inhibited H. pylori biofilm formation. Additionally, this study examined the key target molecules involved in SpoT regulation using weighted gene co-expression network analysis. The analysis revealed that neutrophil-activating protein (NapA; HP0243) promoted H2O2-induced biofilm formation and conferred multidrug resistance. Furthermore, vitamin C exhibited anti-H. pylori biofilm activity and downregulated the expression of napA in vitro These findings provide novel insight into the clearance of H. pylori biofilms.

4.
J Infect Dis ; 226(Suppl 5): S493-S502, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36478249

RESUMEN

BACKGROUND: Helicobacter pylori has become increasingly resistant to all commonly used clinical antibiotics. Therefore, new anti-H. pylori drugs need to be identified. Recently, quinones were found to inhibit growth of H. pylori with quinone-derived small-molecule compounds identified as having antitumor effects. METHODS: The minimum inhibitory concentrations of the compounds against H. pylori were measured by agar plate dilution method. The inhibition of biofilm formation by the compounds was assessed by SYTO9-PI double staining. The reactive oxygen species induced by the compounds were detected by DCFH-DA stain. The clearance effects of the compounds for H. pylori in mouse were evaluated by counting colony-forming units and hematoxylin and eosin staining. RESULTS: Our results revealed strong inhibition of M5N32 in vitro against H. pylori in both the planktonic and biofilm-forming states. Resistance to M5N32 was not developed in successive generations of the bacteria. In vivo, the combination of M5N32 and omeprazole showed enhanced effects in comparison to the standard triple therapy. M5N32 was nontoxic to normal tissues. CONCLUSIONS: M5N32 is effective in the treatment of H. pylori infections, providing potential development of anti-H. pylori medicines in the treatment of H. pylori infections.


Asunto(s)
Helicobacter pylori , Animales , Ratones , Cinética
5.
BMC Microbiol ; 21(1): 122, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879055

RESUMEN

BACKGROUND: Oral lichen planus (OLP), a common clinical oral disease, is associated with an increased risk of malignant transformation. The mechanism underlying the pathogenesis of OLP is unknown. Oral dysbacteriosis is reported to be one of the aetiological factors of OLP. Although Helicobacter pylori infection is associated with various oral diseases, the correlation between H. pylori infection and OLP is unclear. This study aimed to investigate the effect of H. pylori infection on OLP pathogenesis and oral microbiome composition in the Chinese population, which has a high incidence of H. pylori infection. RESULT: In this study, saliva samples of 30 patients with OLP (OLP group) and 21 negative controls (NC group) were collected. H. pylori infection was detected using the carbon-13-labeled urea breath test (UBT). The saliva samples were divided into the following four groups based on the H. pylori status: H. pylori-positive OLP (OLP+), H. pylori-positive NC (NC+), H. pylori-negative OLP (OLP-), and H. pylori-negative NC (NC-). Oral microbiome compositions were significantly different between the OLP and NC groups and between the OLP- and OLP+ groups. Compared with those in the OLP- group, those in the OLP+ group had a higher incidence of erosive OLP and higher levels of salivary cytokines. In contrast, the oral microbiome composition and cytokine levels were not significantly different between the NC- and NC+ groups. CONCLUSIONS: This is the first report to demonstrate that H. pylori infection is significantly correlated with the pathogenesis of erosive OLP.


Asunto(s)
Infecciones por Helicobacter/complicaciones , Liquen Plano Oral/complicaciones , Liquen Plano Oral/microbiología , Microbiota/fisiología , Boca/microbiología , China , Citocinas/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori , Humanos , Saliva/química
6.
Helicobacter ; 25(4): e12715, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32548895

RESUMEN

BACKGROUND: The multidrug resistance of Helicobacter pylori is becoming an increasingly serious issue. It is therefore necessary to study the mechanism of multidrug resistance of H pylori. We have previously identified that the HP0939, HP0497, and HP0471 transporters affect the efflux of drugs from H pylori. As efflux pumps participate in bacterial multidrug resistance and biofilm formation, we hypothesized that these transporters could be involved in the multidrug resistance and biofilm formation of H pylori. MATERIALS AND METHODS: We therefore constructed three knockout strains, Δhp0939, Δhp0497, and Δhp0471, and three high-expression strains, Hp0939he , Hp0497he , and Hp0471he , using the wild-type (WT) 26 695 strain of H pylori as the template. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of wild strains, knockout strains, and high-expression strains to amoxicillin, metronidazole, and other antibiotics were measured. The efflux capacity of high-expression strains and wild strains was compared by Hoechst 33 342 accumulation assay. RESULTS: Determination of the MIC and MBC of the antibiotics revealed that the knockout strains were more sensitive to antibiotics, while the high-expression strains were less sensitive to antibiotics, compared to the WT. The ability of the high-expression strains to efflux drugs was significantly higher than that of the WT. We also induced H pylori to form biofilms, and observed that the knockout strains could barely form biofilms and were more sensitive to several antibiotics, compared to the WT. The mRNA expression of hp0939, hp0497, and hp0471 in the clinically sensitive and multidrug-resistant strains was determined, and it was found that these genes were highly expressed in the multidrug-resistant strains that were isolated from the clinics. CONCLUSIONS: In this study, we found three transporters involved in intrinsic multidrug resistance of H pylori.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Helicobacter pylori/fisiología , Proteínas de Transporte de Membrana/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Expresión Génica , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana
7.
Artículo en Inglés | MEDLINE | ID: mdl-30181372

RESUMEN

The drug resistance of Helicobacter pylori is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance (MDR) in bacteria. The ability of H. pylori to form biofilms on the gastric mucosa is known. However, there are few studies on the regulatory mechanisms of H. pylori biofilm formation and multidrug resistance. Guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized in H. pylori by the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role in H. pylori biofilm formation and multidrug resistance. Therefore, it was necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multidrug resistance of bacteria, we tried to determine whether efflux pumps controlled by SpoT participate in these activities. We found that Hp1174 (glucose/galactose transporter [gluP]), an efflux pump of the major facilitator superfamily (MFS), is highly expressed in biofilm-forming and multidrug-resistant (MDR) H. pylori strains and is upregulated by SpoT. Through further research, we determined that gluP is involved in H. pylori biofilm formation and multidrug resistance. Furthermore, the average expression level of gluP in the clinical MDR strains (C-MDR) was considerably higher than that in the clinical drug-sensitive strains (C-DSS). Taken together, our results revealed a novel molecular mechanism of H. pylori resistance to multidrug exposure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/fisiología , Helicobacter pylori/metabolismo , Regulación hacia Arriba/fisiología , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Guanosina Pentafosfato/metabolismo , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Ovinos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología , Regulación hacia Arriba/efectos de los fármacos
8.
Sensors (Basel) ; 18(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563039

RESUMEN

Vehicle driving path planning is an important information service in intelligent transportation systems. As an important basis for path planning optimization, the travel time prediction method has attracted much attention. However, traffic flow has features of high nonlinearity, time-varying, and uncertainty, which makes it hard for prediction method with single feature to meet the accuracy demand of intelligent transportation system in big data environment. In this paper, the historical vehicle Global Positioning System (GPS) information data is used to establish the traffic prediction model. Firstly, the Clustering in QUEst (CLIQUE)-based clustering algorithm V-CLIQUE is proposed to analyze the historical vehicle GPS data. Secondly, an artificial neural network (ANN)-based prediction model is proposed. Finally, the ANN-based weighted shortest path algorithm, A-Dijkstra, is proposed. We used mean absolute percentage error (MAPE) to evaluate the predictive model and compare it with the predicted results of Average and support regression vector (SRV). Experiments show that the improved ANN path planning model we proposed can accurately predict real-time traffic status at the given location. It has less relative error and saves time for users' travel while saving social resources.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28242673

RESUMEN

Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress.


Asunto(s)
Antibacterianos/uso terapéutico , Claritromicina/uso terapéutico , Farmacorresistencia Bacteriana/genética , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Enzimas Multifuncionales/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana
10.
Gastroenterology ; 144(7): 1478-87, 1487.e1-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23470617

RESUMEN

BACKGROUND & AIMS: Stress alters brain-gut interactions and could exacerbate intestinal disorders, including irritable bowel syndrome. Alterations in the intestinal microbiota have been associated with irritable bowel syndrome. Maintenance of healthy microbiota requires nucleotide-binding oligomerization domain protein-like receptors, pyrin-domain containing (NLRP)-6 inflammasomes. We investigated the involvement of NLRP6 in water-avoidance stress (WAS)-induced intestinal disorders in mice. METHODS: B57BL6 mice were subjected to WAS for 1 hour each day for 10 days; body weights and intestinal inflammation and permeability were analyzed. We investigated signaling via the NLRP3 and NLRP6 inflammasomes, and the role of corticotropin-releasing hormone (CRH) in WAS-associated inflammation and NLRP6 inhibition. Mice that were not exposed to stress were co-housed with mice subjected to WAS to determine the effects of WAS-induced dysbiosis, measured by sequencing bacterial 16S ribosomal RNA. We also assessed the effects of a peroxisome proliferator-activated receptor-γ agonist and probiotics. RESULTS: WAS-induced small-bowel inflammation (enteritis) was associated with inhibition of NLRP6, but not NLRP3, and was prevented by a peroxisome proliferator-activated receptor-γ agonist, which induced epithelial expression of NLRP6. CRH was released during WAS and inhibited NLRP6 expression. WAS induced alterations in the gut microbiota of mice; co-housed nonstressed mice developed enteritis associated with increased CRH and decreased levels of NLRP6. Probiotic therapy reduced intestinal inflammation in mice with WAS-induced enteritis. CONCLUSIONS: Exposure of mice to stress inhibits NLRP6 and alters the composition of the gut microbiota, leading to intestinal inflammation. These findings might explain the benefits of probiotics for patients with stress-associated gastrointestinal disorders.


Asunto(s)
Hormona Liberadora de Corticotropina/fisiología , Enteritis/etiología , Receptores de Superficie Celular/fisiología , Estrés Psicológico/fisiopatología , Animales , Modelos Animales de Enfermedad , Enteritis/terapia , Femenino , Inflamasomas/metabolismo , Síndrome del Colon Irritable/fisiopatología , Síndrome del Colon Irritable/psicología , Metagenoma/fisiología , Ratones , Ratones Endogámicos C57BL , PPAR gamma/agonistas , Probióticos/uso terapéutico , Estrés Psicológico/complicaciones
11.
Cancer Lett ; 588: 216746, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38387756

RESUMEN

Helicobacter pylori (H. pylori) infection is considered to be an important factor in gastric cancer (GC). Long noncoding RNA (lncRNA) and m6A modification are involved in the occurrence and development of GC, but the role of lncRNA m6A modification in the development of GC mediated by H. pylori is still unclear. Here, we found that H. pylori infection downregulated the expression of lnc-PLCB1 through METTL14-mediated m6A modification and IRF2-mediated transcriptional regulation. Overexpression of lnc-PLCB1 inhibited the proliferation and migration of GC cells, while downregulation of lnc-PLCB1 promoted the proliferation and migration ability of GC cells. In addition, clinical analysis showed that lnc-PLCB1 is lower in GC tissues than in normal tissues. Further study found that lnc-PLCB1 reduced the protein stability of its binding protein DEAD-box helicase 21 (DDX21) and then downregulated the expression of CCND1 and Slug, thereby playing tumour suppressing role in the occurrence and development of GC. In conclusion, the METTL14/lnc-PLCB1/DDX21 axis plays an important role in H. pylori-mediated GC, and lnc-PLCB1 can be used as a new target for GC treatment.


Asunto(s)
Adenina , Infecciones por Helicobacter , Helicobacter pylori , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/patología , Regulación hacia Abajo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
12.
mSystems ; 9(1): e0099123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38112416

RESUMEN

Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of Peptostreptococcus and Gemella were significantly increased, while the relative abundances of Campylobacter and Aggregatibacter were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., Peptostreptococcus, Gemella, Campylobacter, and Aggregatibacter, could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Microbiota , Humanos , Metanfetamina/efectos adversos , ARN Ribosómico 16S/genética , Trastornos Relacionados con Anfetaminas/complicaciones , Metaboloma , Microbiota/genética , Triptaminas
13.
Front Microbiol ; 14: 1257701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771709

RESUMEN

Gout is an acute arthritis caused by the elevated levels of serum uric acid (UA), and its prevalence has been rapidly increasing. Alcohol abuse could lead to a series of health problems. Multiple pieces of evidence suggest that alcohol intake affects the development and progression of gout, while the gut microbiota plays an important role in the development of gout and the long-term alcohol consumption could affect the stability of the gut microbiota. This study aimed to explore the effects of alcohol intake at different concentrations on gouty arthritis based on the gut microbiota. We investigated the effects of different concentrations of alcohol on gouty arthritis in mouse models of acute gouty arthritis established by injection of monosodium urate (MSU) crystals into C57BL/6 mice. The results indicated that the high-alcohol consumption not only exacerbated joint swelling and pain, increased the levels of UA, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), but also showed dramatic effects on the composition and structure of the gut microbiota in gouty mice. Two key microorganisms, Parasutterella and Alistipes, could aggravate gout symptoms through lipopolysaccharide biosynthesis, riboflavin metabolism, phenylalanine metabolism, and arginine and proline metabolisms. In conclusion, our study suggested that high-concentrations of alcohol altered the gut microbiota structure in gouty mice induced by MSU crystals, which could exacerbate gouty symptoms by enhancing pro-inflammatory pathways.

14.
J Cell Biochem ; 113(11): 3393-402, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22678710

RESUMEN

As a microaerobe, Helicobacter pylori employs the global regulator SpoT for defending against oxidative stress in vitro. However, the mechanisms how SpoT affects bacterial gene expression is still unknown. Moreover, the function of SpoT in H. pylori colonization in the host is remaining undetermined. To explore the functions of the SpoT in H. pylori pathogenesis, we constructed H. pylori 26695 spoT-deficient mutant (ΔspoT). While grown in ambient atmosphere, protein expression profile of the ΔspoT was analyzed with 2D gel electrophoresis and real-time PCR. Compared to the wild type, the spoT-deficient strain downregulated its transcription of the oxidative-induced genes, as well as the genes responsible for protein degradation and that related to energy metabolism. Meanwhile, the colonization ability of ΔspoT strains in Mongolian gerbil was tested, the results demonstrated a decayed colonization in the mouse stomach with ΔspoT than the wild type. As a matter of facts, the AGS cells infected with the ΔspoT strains excreted increased level of the gastric inflammation cytokines IL-8, and the ΔspoT strains showed poor survival ability when treated with reactive oxygen stress (sodium nitroprusside). The elevated capacity of stimulating cytokines and fragility to reactive oxygen stress may be contribute to decreased colonization of the spoT-deficient mutant in the mouse stomach. Conclusively, we speculate that spoT is a key regulator of the genes for H. pylori spreading in the air and colonization in host stomach.


Asunto(s)
Proteínas Bacterianas/genética , Helicobacter pylori/fisiología , Pirofosfatasas/genética , Estómago/microbiología , Aerobiosis/fisiología , Animales , Proteínas Bacterianas/metabolismo , Recuento de Colonia Microbiana , Medios de Cultivo , Gerbillinae , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/patogenicidad , Interleucina-8/inmunología , Interleucina-8/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Mutación , Nitroprusiato/farmacología , Oxidantes/farmacología , Estrés Oxidativo , Proteómica , Pirofosfatasas/deficiencia , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
J Cell Biochem ; 113(3): 1080-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22266963

RESUMEN

Infection with CagA-positive Helicobacter pylori is the strongest risk factor for gastric carcinoma. Upon delivery into gastric epithelial cells, CagA disturbs cellular functions by physically interacting with and deregulating intracellular signaling molecules via both tyrosine phosphorylation-dependent and -independent mechanisms. Runx3 was suggested to be a tumor suppressor and closely associated with tumorigenesis and progression of gastric cancer. The aim of our study is to verify the effect of H. pylori virulence factor CagA on Runx3 expression level and investigate the corresponding molecular mechanisms and signaling pathways influencing Runx3 expression. Human gastric epithelial immortalized GES-1 cells were transfected with CagA-expression vector or control vector with FuGENE HD transfection reagent. Runx3 expression levels were determined by QRT-PCR and immunoblotting. Then we constructed a 1,150 bp Runx3 promoter luciferase reporter plasmid, pGL(3)-1150 bp, which was co-transfected into GES-1 cell with CagA-expression vector or control vector. Luciferase reporter assay was used to determine the effects of CagA on the 1,150 bp promoter activity of Runx3. Signal inhibitors were used to detect the signal pathway(s) through which CagA affects Runx3. Our results showed that CagA can reduce the expression level of Runx3 at both mRNA and protein levels significantly. Importantly, the 1,150 bp Runx3 promoter activity was decreased in cells transfected with CagA-expression vector comparing with cells transfected with control vector. And this inhibition is dependent on the phosphorylation of CagA. Signal pathways Src/MEK/ERK and p38 MAPK are involved in this regulation. Our findings provide new insights for understanding the mechanism of H. pylori carcinogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Mucosa Gástrica/metabolismo , Sistema de Señalización de MAP Quinasas , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mucosa Gástrica/enzimología , Mucosa Gástrica/microbiología , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
16.
Curr Microbiol ; 65(1): 108-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22538471

RESUMEN

When stressed, bacteria can enter various nondividing states. In the present study, nondividing filamentous form in Helicobacter pylori was induced by a ß-lactam antibiotic, aztreonam. In order to find possible cell division checkpoints in H. pylori, 2-DE was used to compare the proteomic profile of nondividing filamentous H. pylori with its spiral form. In total, 21 proteins involved in various cellular processes showed differential expression. One protein induced by aztreonam was a cell division inhibitor (minD), related to cell division. We then constructed the deletion mutant of minD in H. pylori 26695. Scanning electron microscope observation showed that the deletion of this protein provoked some bacteria to change into a short rod-shape and the viability of the mutant is lower than that of the wild type. Moreover, sequence comparison showed that minD of H. pylori and that of Escherichia coli share 50 % amino acid identity. This suggested that this protein possibly plays the similar part in H. pylori as in E. coli.


Asunto(s)
Antibacterianos/farmacología , Aztreonam/farmacología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/crecimiento & desarrollo , Proteoma/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Electroforesis en Gel Bidimensional , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Datos de Secuencia Molecular , Proteoma/química , Proteoma/genética , Eliminación de Secuencia
17.
Front Microbiol ; 13: 837182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145506

RESUMEN

As a chronic metabolic disease caused by disorders of purine metabolism, gout has shown increasing incidence rate worldwide. Considering that gout is not easily treated and cured, further studies are explored to prevent gout development through diet modification. Both ß-carotin and green tea powder are rich in dietary fiber, which helps maintain the balance of gut microbiota in humans. The aim of this study was to investigate the effects of ß-carotin and green tea powder diet on the prevention of gouty arthritis in relation to the bacterial structure of gut microbiota in mice. We successfully induced gouty arthritis in C57BL/6 mice by injecting monosodium urate (MSU) crystals and feeding high-fat diet (HFD), and further investigated the effects of additional ß-carotin and green tea powder in the diets of mice on the prevention of gouty arthritis in mice. Our results showed that diet of ß-carotin and green tea powder reduced the joint swelling and pain in mice with gout, reduced the levels of serum uric acid (UA) and three types of pro-inflammatory cytokines, i.e., interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), improved the gut microbiota profile, and reduced the metabolic levels of purines and pyrimidines. In conclusion, our study provided evidence to support the application of ß-carotin and green tea powder diet as a dietary adjustment method to prevent and treat gouty arthritis.

18.
Cell Death Dis ; 13(4): 409, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484118

RESUMEN

Helicobacter pylori (H. pylori) is one of the main causes of gastric cancer. It has been reported that circRNAs play a vital role in the development of multiple types of cancer. However, the role of H. pylori-induced circRNAs in the development of gastric cancer has not been studied. In this study, we found that H. pylori could induce the upregulation of circMAN1A2 in AGS and BGC823 cells independent of CagA. The downregulation of circMAN1A2 could inhibit the proliferation, migration and invasion of gastric cancer cells, and circMAN1A2 could promote the progression of gastric cancer induced by H. pylori by sponging miR-1236-3p to regulate MTA2 expression. Furthermore, circMAN1A2 knockdown inhibited xenograft tumour growth in vivo, and the overexpression of circMAN1A2 was associated with the progression of gastric cancer. Hence, Helicobacter pylori induced circMAN1A2 expression to promote the carcinogenesis of gastric cancer, and circMAN1A2 might be a new potential diagnostic marker and therapeutic target for gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , MicroARNs , Neoplasias Gástricas , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Histona Desacetilasas/metabolismo , Humanos , MicroARNs/metabolismo , ARN Circular/genética , Proteínas Represoras/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
19.
Virol J ; 7: 368, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21156081

RESUMEN

BACKGROUND: To establish a convenient system for the study of human papillomavirus (HPV), we inserted a Saccharomyces cerevisiae selectable marker, Ura, into HPV58 genome and transformed it into yeast. RESULTS: HPV58 genome could replicate extrachromosomally in yeast, with transcription of its early and late genes. However, with mutation of the viral E2 gene, HPV58 genome lost its mitotic stability, and the transcription levels of E6 and E7 genes were upregulated. CONCLUSIONS: E2 protein could participate in viral genome maintenance, replication and transcription regulation. This yeast model could be used for the study of certain aspects of HPV life cycle.


Asunto(s)
Papillomaviridae/fisiología , Saccharomyces cerevisiae/virología , Transcripción Genética , Virología/métodos , Replicación Viral , Perfilación de la Expresión Génica , Genes Virales , Humanos , Transformación Genética
20.
Fish Shellfish Immunol ; 29(4): 551-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20362060

RESUMEN

The cDNAs encoding CathL and legumain from Chinese white shrimp Fenneropenaeus chinensis (FcCathL, FcLegu) were obtained. Both FcCathL and FcLegu mRNA were expressed mainly in the hepatopancreas of unchallenged shrimp. Time-course analysis of FcCathL showed that FcCathL was upregulated in the hepatopancreas of shrimp challenged with white spot syndrome virus (WSSV) at 12 h. FcLegu mRNA in hepatopancreas was down-regulated by Vibrio. FcLegu transcript first declined from 2 h to 6 h and then recovered from 12 h to 24 h in hepatopancreas challenged with WSSV. FcCathL protein was detected in the hemocytes, hepatopancreas, gill, stomach, and intestine of unchallenged shrimp. Three bands of FcCathL protein detected in some tissues may represent preproenzyme, single chain and mature double chain form respectively. In hepatopancreas, FcLegu was detected in the proenzyme form. In other tissues, only active form could be detected. The protein of FcLegu was down-regulated by Vibrio or WSSV challenge in the stomach and gills. FcCathL and FcLegu were proposed to play a role in shrimp innate immunity for the first time.


Asunto(s)
Catepsina L/inmunología , Cisteína Endopeptidasas/inmunología , Penaeidae , Vibrio/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Catepsina L/genética , Clonación Molecular , Cisteína Endopeptidasas/genética , Regulación Enzimológica de la Expresión Génica , Penaeidae/enzimología , Penaeidae/inmunología , Penaeidae/microbiología , Penaeidae/virología , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA