Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem J ; 478(7): 1471-1484, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33769438

RESUMEN

Tau pathology initiates in defined brain regions and is known to spread along neuronal connections as symptoms progress in Alzheimer's disease (AD) and other tauopathies. This spread requires the release of tau from donor cells, but the underlying molecular mechanisms remained unknown. Here, we established the interactome of the C-terminal tail region of tau and identified syntaxin 8 (STX8) as a mediator of tau release from cells. Similarly, we showed the syntaxin 6 (STX6), part of the same SNARE family as STX8 also facilitated tau release. STX6 was previously genetically linked to progressive supranuclear palsy (PSP), a tauopathy. Finally, we demonstrated that the transmembrane domain of STX6 is required and sufficient to mediate tau secretion. The differential role of STX6 and STX8 in alternative secretory pathways suggests the association of tau with different secretory processes. Taken together, both syntaxins, STX6 and STX8, may contribute to AD and PSP pathogenesis by mediating release of tau from cells and facilitating pathology spreading.


Asunto(s)
Enfermedad de Alzheimer/patología , Dominios y Motivos de Interacción de Proteínas , Proteínas Qa-SNARE/metabolismo , Vías Secretoras , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Unión Proteica , Proteínas Qa-SNARE/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética
2.
Hum Genet ; 134(10): 1099-115, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275350

RESUMEN

GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Ensamble y Desensamble de Cromatina , Cilios/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Musculares/química , Proteínas Nucleares/química , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Transactivadores/química , Técnicas del Sistema de Dos Híbridos
3.
Biofabrication ; 15(3)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37094574

RESUMEN

Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development ofin vitromodels that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Rampa Timpánica/cirugía , Cóclea/cirugía , Implantación Coclear/métodos
4.
Sci Rep ; 13(1): 15043, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700036

RESUMEN

Posttraumatic syringomyelia (PTS) is an enigmatic condition characterized by the development of fluid-filled cysts (syrinxes) within the spinal cord. Perivascular spaces (PVS) are a critical component of fluid transport within the central nervous system (CNS), with dilated PVSs variably implicated in the pathogenesis of syringomyelia. The extent and spatial distribution of dilated PVSs in syringomyelia, however, remains unclear. This study aims to develop a method to assess PVS dimensions across multiple spinal cord segments in rats with PTS. Syrinxes were induced in two Sprague-Dawley rats at C6/7 with computer-controlled motorized spinal cord impaction; two control rats underwent sham laminectomies. Spinal cord segments were obtained at C4, C6 and C8, cleared via tissue clearing protocols, stained with immunofluorescent antibodies and imaged under confocal microscopy. Qualitative and quantitative analyses of PVS size were performed. Arteriolar PVSs were enlarged in the perisyringeal region of the spinal cord, compared to the control cord. No PVS enlargement was observed above or below the syrinx. These results confirm previous incidental findings of enlarged PVSs in the perisyringeal region, providing new insights into PVS dimensions across multiple spinal segments, and providing a novel method for quantifying spinal cord perivascular space size distributions.


Asunto(s)
Siringomielia , Ratas , Animales , Ratas Sprague-Dawley , Siringomielia/diagnóstico por imagen , Siringomielia/etiología , Roedores , Sistema Nervioso Central , Hipertrofia
5.
J Control Release ; 362: 184-196, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37648081

RESUMEN

Growth factors are key molecules involved in angiogenesis, a process critical for tissue repair and regeneration. Despite the potential of growth factor delivery to stimulate angiogenesis, limited clinical success has been achieved with this approach. Growth factors interact with the extracellular matrix (ECM), and particularly heparan sulphate (HS), to bind and potentiate their signalling. Here we show that engineered short forms of perlecan, the major HS proteoglycan of the vascular ECM, bind and signal angiogenic growth factors, including fibroblast growth factor 2 and vascular endothelial growth factor-A. We also show that engineered short forms of perlecan delivered in porous chitosan biomaterial scaffolds promote angiogenesis in a rat full thickness dermal wound model, with the fusion of perlecan domains I and V leading to superior vascularisation compared to native endothelial perlecan or chitosan scaffolds alone. Together, this study demonstrates the potential of engineered short forms of perlecan delivered in chitosan scaffolds as next generation angiogenic therapies which exert biological activity via the potentiation of growth factors.


Asunto(s)
Quitosano , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas de la Matriz Extracelular
6.
Mutat Res ; 748(1-2): 8-16, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22743356

RESUMEN

Consumers are exposed daily to several pesticide residues in food, which can be of potential concern for human health. Based on a previous study dealing with exposure of the French population to pesticide residues via the food, we selected 14 pesticides frequently found in foodstuffs, on the basis of their persistence in the environment or their bioaccumulation in the food chain. In a first step, the objective of this study was to investigate if the 14 selected pesticides were potentially cytotoxic and genotoxic. For this purpose, we used a new and sensitive genotoxicity assay (the γH2AX test, involving phosphorylation of histone H2AX) with four human cell lines (ACHN, SH-SY5Y, LS-174T and HepG2), each originating from a potential target tissue of food contaminants (kidney, nervous system, colon, and liver, respectively). Tebufenpyrad was the only compound identified as genotoxic and the effect was only observed in the SH-SY5Y neuroblastoma cell-line. A time-course study showed that DNA damage appeared early after treatment (1h), suggesting that oxidative stress could be responsible for the induction of γH2AX. In a second step, three other pesticides were studied, i.e. bixafen, fenpyroximate and tolfenpyrad, which - like tebufenpad - also had a methyl-pyrazole structure. All these compounds demonstrated genotoxic activity in SH-SY5Y cells at low concentration (nanomolar range). Complementary experiments demonstrated that the same compounds show genotoxicity in a human T-cell leukemia cell line (Jurkat). Moreover, we observed an increased production of reactive oxygen species in Jurkat cells in the presence of the four methyl-pyrazoles. These results demonstrate that tebufenpyrad, bixafen, fenpyroximat and tolfenpyrad induce DNA damage in human cell lines, very likely by a mode of action that involves oxidative stress. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans.


Asunto(s)
Muerte Celular/efectos de los fármacos , Daño del ADN , Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Pirazoles/toxicidad , Línea Celular , Contaminación de Alimentos , Histonas/metabolismo , Humanos , Linfocitos/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
Front Plant Sci ; 11: 580389, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101348

RESUMEN

Digital image processing is commonly used in plant health and growth analysis, aiming to improve research efficiency and repeatability. One focus is analysing the morphology of stomata, with the aim to better understand the regulation of gas exchange, its link to photosynthesis and water use and how they are influenced by climatic conditions. Despite the key role played by these cells, their microscopic analysis is largely manual, requiring intricate sample collection, laborious microscope application and the manual operation of a graphical user interface to identify and measure stomata. This research proposes a simple, end-to-end solution which enables automatic analysis of stomata by introducing key changes to imaging techniques, stomata detection as well as stomatal pore area calculation. An optimal procedure was developed for sample collection and imaging by investigating the suitability of using an automatic microscope slide scanner to image nail polish imprints. The use of the slide scanner allows the rapid collection of high-quality images from entire samples with minimal manual effort. A convolutional neural network was used to automatically detect stomata in the input image, achieving average precision, recall and F-score values of 0.79, 0.85, and 0.82 across four plant species. A novel binary segmentation and stomatal cross section analysis method is developed to estimate the pore boundary and calculate the associated area. The pore estimation algorithm correctly identifies stomata pores 73.72% of the time. Ultimately, this research presents a fast and simplified method of stomatal assay generation requiring minimal human intervention, enhancing the speed of acquiring plant health information.

8.
Cell Stem Cell ; 26(1): 64-80.e13, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883834

RESUMEN

The remarkable regenerative capacity of the endometrium (the inner lining of the uterus) is essential for the sustenance of mammalian life. Over the years, the role of stem cells in endometrial functions and their pathologies has been suggested; however, the identity and location of such stem cells remain unclear. Here, we used in vivo lineage tracing to show that endometrial epithelium self-renews during development, growth, and regeneration and identified Axin2, a classical Wnt reporter gene, as a marker of long-lived bipotent epithelial progenitors that reside in endometrial glands. Axin2-expressing cells are responsible for epithelial regeneration in vivo and for endometrial organoid development in vitro. Ablation of Axin2+ cells severely impairs endometrial homeostasis and compromises its regeneration. More important, upon oncogenic transformation, these cells can lead to endometrial cancer. These findings provide valuable insights into the cellular basis of endometrial functions and diseases.


Asunto(s)
Endometrio , Células Epiteliales , Animales , Transformación Celular Neoplásica , Femenino , Homeostasis , Células Madre
9.
J Mol Biol ; 432(2): 448-466, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31756331

RESUMEN

Crosstalk exists when two or more post-translational modifications, nearby in sequence or 3D space, affect each other or a protein's interactions. Saccharomyces cerevisiae protein Npl3p has six repeats of sequence SRGG, in a disordered domain, which can carry arginine methylation and serine phosphorylation. Crosstalk of the modifications controls Npl3p interactions with nuclear import, export, and other proteins. Here, we asked whether repeated SRGG motifs existed in other S. cerevisiae proteins and whether they serve a related function. Two other proteins had multiple SRGG motifs: Nop1p (fibrillarin) and Gar1p, both nucleolar proteins, which had nine and four motifs, respectively. For Nop1p, we first showed it to be extensively methylated in vivo. We then showed that the Nop1p SRGG motif is subjected to methylation by Hmt1p, phosphorylation by Sky1p, and Glc7p dephosphorylation and that there is crosstalk whereby phosphorylation blocks methylation. This is consistent with our recent motif analysis of Hmt1p, which revealed a negative specificity for acidic residues at -1 and -2 positions. On knockout of HMT1, Nop1p-GFP localization was not typically nucleolar. Conditional two-hybrid analysis, of Nop1p with C/D box small ribonuclear proteins Nop56p and Nop58p, suggested this may be associated with decreased protein-protein interactions on loss of arginine methylation. The effect of SRGG phosphorylation on the interactions of Nop1p remains unknown yet was predicted to cause a structural disorder-to-order transition in the Nop1p N-terminal domain. The SRGG motif is one of very few examples of modification crosstalk that has related functions in multiple proteins from the same species.


Asunto(s)
Secuencias de Aminoácidos/genética , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/genética , Secuencias Repetitivas de Aminoácido/genética , Transporte Activo de Núcleo Celular/genética , Arginina/genética , Núcleo Celular/ultraestructura , Proteínas Cromosómicas no Histona/química , Metilación , Proteínas Nucleares/genética , Fosforilación/genética , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética
10.
Bio Protoc ; 9(23): e3439, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654934

RESUMEN

Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.

12.
Tissue Eng Part A ; 16(5): 1457-68, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19938961

RESUMEN

The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.


Asunto(s)
Capilares/anatomía & histología , Células Epiteliales/citología , Ingeniería de Tejidos/métodos , Células 3T3 , Animales , Anticuerpos Neutralizantes , Capilares/citología , Capilares/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células Epiteliales/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Ratones , Tamaño de los Órganos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Piel Artificial , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA