Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proteins ; 85(11): 1994-2008, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28718923

RESUMEN

In this report we investigated, within a group of closely related single domain camelid antibodies (VH Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like VH Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.


Asunto(s)
Anticuerpos Neutralizantes , Mapeo Epitopo/métodos , Modelos Moleculares , Ingeniería de Proteínas/métodos , Ricina , Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Camelidae , Unión Proteica , Ricina/química , Ricina/aislamiento & purificación , Ricina/metabolismo , Alineación de Secuencia , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo
2.
Anal Chem ; 89(17): 8931-8941, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28753295

RESUMEN

A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

3.
Mol Pharm ; 13(4): 1317-28, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26942274

RESUMEN

The metal-catalyzed oxidation by [Fe(II)(EDTA)](2-)/H2O2 of IgG-1 leads to the site-specific hydrolysis of peptide bonds in the Fc region. The major hydrolytic cleavage occurs between Met428 and His429, consistent with a mechanism reported for the site-specific hydrolysis of parathyroid hormone (1-34) between Met8 and His9 (Mozziconacci, O.; et al. Mol. Pharmaceutics 2013, 10 (2), 739-755). In IgG-1, to a lesser extent, we also observe hydrolysis reactions between Met252 and Ile253. After 2 h of oxidation (at pH 5.8, 37 °C) approximately 5% of the protein is cleaved between Met428 and His429. For comparison, after 2 h of oxidation, the amount of tryptic peptides containing a Met sulfoxide residue represents less than 0.1% of the protein. The effect of this site-specific hydrolysis on the conformational stability and aggregation propensity of the antibody was also examined. No noticeable differences in structural integrity and conformational stability were observed between control and oxidized IgG-1 samples as measured by circular dichroism (CD), fluorescence spectroscopy, and static light scattering (SLS). Small amounts of soluble and insoluble aggregates (3-6%) were, however, observed in the oxidized samples by UV-visible absorbance spectroscopy and size exclusion chromatography (SEC). Over the course of metal-catalyzed oxidation, increasing amounts of fragments were also observed by SEC. An increase in the concentration of subvisible particles was detected by microflow imaging (MFI).


Asunto(s)
Inmunoglobulina G/química , Metales/química , Metionina/química , Catálisis , Cromatografía en Gel , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Hidrólisis , Oxidación-Reducción , Espectrometría de Fluorescencia
4.
Infect Immun ; 83(1): 292-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25368115

RESUMEN

Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55 °C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90 °C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Detergentes/química , Animales , Fenómenos Químicos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ratones , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Temperatura
5.
Biochemistry ; 52(49): 8790-9, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24236510

RESUMEN

The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri , providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is composed of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g., deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. Although the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study because of the hydrophobic nature of the IpaB and IpaC translocator proteins. Here, we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11-27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together, these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Shigella flexneri/fisiología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Ácido Desoxicólico/química , Transferencia Resonante de Energía de Fluorescencia , Hemólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Factores de Virulencia/química
7.
J Pharm Sci ; 109(1): 353-363, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31195015

RESUMEN

In this work, we continue to examine excipient effects on the reversible self-association (RSA) of 2 different IgG1 monoclonal antibodies (mAb-J and mAb-C). We characterize the RSA behavior of mAb-C which, similar to mAb-J (see Part 1), undergoes concentration-dependent RSA, but by a different molecular mechanism. Five additives that affect protein hydrophobic interactions to varying extents including a chaotropic salt (guanidine hydrochloride), a hydrophobic salt (trimethylphenylammonium iodide), an aromatic amino acid derivative (tryptophan amide hydrochloride), a kosmotropic salt (sodium sulfate, Na2SO4), and a less polar solvent (ethanol) were evaluated to determine their effects on the solution properties, molecular properties, and RSA of mAb-C at various protein concentrations. Four of the 5 additives examined demonstrated favorable effects on the pharmaceutical properties of high concentration mAb-C solutions (i.e., lower viscosity and weakened protein-protein interactions, PPIs) with a ranking order of guanidine hydrochloride > trimethylphenylammonium iodide > tryptophan amide hydrochloride > ethanol as measured by various biophysical techniques. Conversely, addition of Na2SO4 resulted in less desirable solution properties and enhanced PPIs. The effect of these 5 additives on mAb-C backbone dynamics were evaluated by hydrogen exchange-mass spectrometry (at high vs. low protein concentrations) to better understand their effects on the molecular sites of RSA in mAb-C.


Asunto(s)
Anticuerpos Monoclonales/química , Excipientes/química , Inmunoglobulina G/química , Agregado de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Transición de Fase , Estabilidad Proteica , Soluciones , Solventes/química , Viscosidad
8.
J Pharm Sci ; 109(1): 380-393, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400347

RESUMEN

Although live attenuated Rotavirus (RV) vaccines are available globally to provide protection against enteric RV disease, efficacy is substantially lower in low- to middle-income settings leading to interest in alternative vaccines. One promising candidate is a trivalent nonreplicating RV vaccine, comprising 3 truncated RV VP8 subunit proteins fused to the P2 CD4+ epitope from tetanus toxin (P2-VP8-P[4/6/8]). A wide variety of analytical techniques were used to compare the physicochemical properties of these 3 recombinant fusion proteins. Various environmental stresses were used to evaluate antigen stability and elucidate degradation pathways. P2-VP8-P[4] and P2-VP8-P[6] displayed similar physical stability profiles as function of pH and temperature while P2-VP8-P[8] was relatively more stable. Forced degradation studies revealed similar chemical stability profiles with Met1 most susceptible to oxidation, the single Cys residue (at position 173/172) forming intermolecular disulfide bonds (P2-VP8-P[6] was most susceptible), and Asn7 undergoing the highest levels of deamidation. These results are visualized in a structural model of the nonreplicating RV antigens. The establishment of key structural attributes of each antigen, along with corresponding stability-indicating methods, have been applied to vaccine formulation development efforts (see companion paper), and will be utilized in future analytical comparability assessments.


Asunto(s)
Antígenos Virales/genética , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus , Rotavirus/inmunología , Composición de Medicamentos , Estabilidad de Medicamentos , Escherichia coli/genética , Proteínas Recombinantes de Fusión/genética , Vacunas contra Rotavirus/química , Vacunas contra Rotavirus/genética , Vacunas contra Rotavirus/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas no Estructurales Virales/genética
9.
J Pharm Sci ; 107(4): 1009-1019, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29269271

RESUMEN

Antibodies are molecules that exhibit diverse conformational changes on different timescales, and there is ongoing interest to better understand the relationship between antibody conformational dynamics and storage stability. Physical stability data for an IgG4 monoclonal antibody (mAb-D) were gathered through traditional forced degradation (temperature and stirring stresses) and accelerated stability studies, in the presence of different additives and solution conditions, as measured by differential scanning calorimetry, size exclusion chromatography, and microflow imaging. The results were correlated with hydrogen exchange mass spectrometry (HX-MS) data gathered for mAb-D in the same formulations. Certain parameters of the HX-MS data, including hydrogen exchange in specific peptide segments in the CH2 domain, were found to correlate with stabilization and destabilization of additives on mAb-D during thermal stress. No such correlations between mAb physical stability and HX-MS readouts were observed under agitation stress. These results demonstrate that HX-MS can be set up as a streamlined methodology (using minimal material and focusing on key peptide segments at key time points) to screen excipients for their ability to physically stabilize mAbs. However, useful correlations between HX-MS and either accelerated or real-time stability studies will be dependent on a particular mAb's degradation pathway(s) and the type of stresses used.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Excipientes/química , Hidrógeno/química , Inmunoglobulina G/inmunología , Estabilidad Proteica/efectos de los fármacos , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Cromatografía en Gel/métodos , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Conformación Proteica
10.
J Pharm Sci ; 107(9): 2315-2324, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29751008

RESUMEN

We have used hydrogen exchange-mass spectrometry to characterize local backbone flexibility of 4 well-defined IgG1-Fc glycoforms expressed and purified from Pichia pastoris, 2 of which were prepared using subsequent in vitro enzymatic treatments. Progressively decreasing the size of the N-linked N297 oligosaccharide from high mannose (Man8-Man12), to Man5, to GlcNAc, to nonglycosylated N297Q resulted in progressive increases in backbone flexibility. Comparison of these results with recently published physicochemical stability and Fcγ receptor binding data with the same set of glycoproteins provide improved insights into correlations between glycan structure and these pharmaceutical properties. Flexibility significantly increased upon glycan truncation in 2 potential aggregation-prone regions. In addition, a correlation was established between increased local backbone flexibility and increased deamidation at asparagine 315. Interestingly, the opposite trend was observed for oxidation of tryptophan 277 where faster oxidation correlated with decreased local backbone flexibility. Finally, a trend of increasing C'E glycopeptide loop flexibility with decreasing glycan size was observed that correlates with their FcγRIIIa receptor binding properties. These well-defined IgG1-Fc glycoforms serve as a useful model system to identify physicochemical stability and local backbone flexibility data sets potentially discriminating between various IgG glycoforms for potential applicability to future comparability or biosimilarity assessments.


Asunto(s)
Química Farmacéutica/métodos , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas en Tándem/métodos , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/análisis , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/análisis , Inmunoglobulina G/metabolismo , Espectrometría de Masas/métodos , Pichia , Docilidad , Estructura Secundaria de Proteína , Protones
11.
Immunohorizons ; 2(8): 262-273, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30766971

RESUMEN

Ricin is a fast-acting protein toxin classified by the Centers for Disease Control and Prevention as a biothreat agent. In this report, we describe five new mouse mAbs directed against an immunodominant region, so-called epitope cluster II, on the surface of ricin's ribosome-inactivating enzymatic subunit A (RTA). The five mAbs were tested alongside four previously described cluster II-specific mAbs for their capacity to passively protect mice against 10× LD50 ricin challenge by injection. Only three of the mAbs (LE4, PH12, and TB12) afforded protection over the 7-d study period. Neither binding affinity nor in vitro toxin-neutralizing activity could fully account for LE4, PH12, and TB12's potent in vivo activity relative to the other six mAbs. However, epitope mapping studies by hydrogen exchange-mass spectrometry revealed that LE4, PH12, and TB12 shared common contact points on RTA corresponding to RTA α-helices D and E and ß-strands d and e located on the back side of RTA relative to the active site. The other six mAbs recognized overlapping epitopes on RTA, but none shared the same hydrogen exchange-mass spectrometry profile as LE4, PH12, and TB12. A high-density competition ELISA with a panel of ricin-specific, single-domain camelid Abs indicated that even though LE4, PH12, and TB12 make contact with similar secondary motifs, they likely approach RTA from different angles. These results underscore how subtle differences in epitope specificity can significantly impact Ab functionality in vivo. ImmunoHorizons, 2018, 2: 262-273.

12.
J Pharm Sci ; 106(12): 3474-3485, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28780391

RESUMEN

A novel protein adjuvant double-mutant Escherichia coli heat-labile toxin, LT (R192G/L211A) or dmLT, is in preclinical and early clinical development with various vaccine candidates. Structural characterization and formulation development of dmLT will play a key role in its successful process development, scale-up/transfer, and commercial manufacturing. This work describes extensive analytical characterization of structural integrity and physicochemical stability profile of dmLT from a lyophilized clinical formulation. Reconstituted dmLT contained a heterogeneous mixture of intact holotoxin (AB5, ∼75%) and free B5 subunit (∼25%) as assessed by analytical ultracentrifugation and hydrophobic interaction chromatography. Intact mass spectrometry (MS) analysis revealed presence of Lys84 glycation near the native sugar-binding site in dmLT, and forced degradation studies using liquid chromatography-MS peptide mapping demonstrated specific Asn deamidation and Met oxidation sites. Using multiple biophysical measurements, dmLT was found most stable between pH 6.5 and 7.5 and at temperatures ≤50°C. In addition, soluble aggregates and particle formation were observed upon shaking stress. By identifying the physicochemical degradation pathways of dmLT using newly developed stability-indicating analytical methods from this study, we aim at developing more stable candidate formulations of dmLT that will minimize the formation of degradants and improve storage stability, as both a frozen bulk substance and eventually as a liquid final dosage form.


Asunto(s)
Adyuvantes Farmacéuticos/química , Toxinas Bacterianas/química , Enterotoxinas/química , Proteínas de Escherichia coli/química , Proteínas Mutantes/química , Química Farmacéutica/métodos , Formas de Dosificación , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Escherichia coli/química
13.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29046307

RESUMEN

RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed ß-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Mapeo Epitopo , Epítopos/inmunología , Vacunas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Humanos , Macaca mulatta , Unión Proteica , Vacunas de Subunidad/inmunología
14.
Artículo en Inglés | MEDLINE | ID: mdl-27071526

RESUMEN

Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed.


Asunto(s)
Antígenos/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Vacunas/química , Adyuvantes Inmunológicos/química , Animales , Cromatografía Liquida/instrumentación , Humanos , Vacunas contra la Influenza/química , Espectrometría de Masas/instrumentación , Proteínas Recombinantes/química , Vacunas de Partículas Similares a Virus/química
15.
Protein Sci ; 25(5): 1037-48, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26947936

RESUMEN

Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Shigella flexneri/patogenicidad , Adenosina Trifosfatasas/genética , Dominio Catalítico , Cromatografía en Gel , Células HeLa/microbiología , Humanos , Mutación Puntual , Multimerización de Proteína , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
16.
J Pharm Sci ; 104(12): 4065-4073, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26422758

RESUMEN

Diarrhea caused by Shigella, Salmonella, and Yersinia is an important public health problem, but development of safe and effective vaccines against such diseases is challenging. A new antigen delivery platform called bacterium-like particles (BLPs) was explored as a means for delivering protective antigens from the type III secretion systems (T3SS) of these pathogens. BLPs are peptidoglycan skeletons derived from Lactococcus lactis that are safe for newborns and can carry multiple antigens. Hydrophobic T3SS translocator proteins were fused to a peptidoglycan anchor (PA) for BLP attachment. The proteins and protein-BLP complexes associated with BLPs were characterized and the resulting data used to create three-index empirical phase diagrams (EPDs). On the basis of these EPDs, IpaB (Shigella) and SipB (Salmonella) behave distinctly from YopB (Yersinia) under different environmental stresses. Adding the PA domain appears to enhance the stability of both the PA and translocator proteins, which was confirmed using differential scanning calorimetry, and although the particles dominated the spectroscopic signals in the protein-loaded BLPs, structural changes in the proteins were still detected. The protein-BLPs were most stable near neutral pH, but these proteins' hydrophobicity made them sensitive to environmental stresses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transporte de Proteínas/fisiología , Sistemas de Secreción Tipo III/metabolismo , Antígenos Bacterianos/metabolismo , Bacterias/metabolismo , Biofisica/métodos , Lactococcus lactis/metabolismo , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA