Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(11): 1979-1991, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334824

RESUMEN

Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.


Asunto(s)
Anexina A2/metabolismo , Anexina A2/fisiología , Adipogénesis , Animales , Anexina A2/genética , Disferlina , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/terapia , Miofibrillas/fisiología , Sarcolema/metabolismo
2.
Mol Ther ; 26(9): 2231-2242, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30166241

RESUMEN

Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice-findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.


Asunto(s)
Disferlina/deficiencia , Distrofias Musculares/tratamiento farmacológico , Esteroides/uso terapéutico , Adolescente , Animales , Células Cultivadas , Disferlina/metabolismo , Humanos , Masculino , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Prednisolona/uso terapéutico , Pregnadienodioles/uso terapéutico
3.
Hum Mol Genet ; 25(1): 130-45, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26566673

RESUMEN

Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits.


Asunto(s)
Modelos Animales de Enfermedad , Antecedentes Genéticos , Distrofia Muscular Animal/genética , Animales , Peso Corporal , Distrofina/genética , Ecocardiografía , Femenino , Fuerza de la Mano , Pruebas de Función Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Contracción Muscular , Músculos/patología , Distrofia Muscular Animal/patología , Miofibrillas/patología , Miositis/genética , Miositis/patología , Tamaño de los Órganos , Fenotipo
4.
Nitric Oxide ; 80: 70-81, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30114530

RESUMEN

Sickle cell disease (SCD) patients can have limited exercise capacity and muscle dysfunction characterized by decreased force, atrophy, microvascular abnormalities, fiber distribution changes, and skeletal muscle energetics abnormalities. Growing evidence suggests that in SCD there is alteration in nitric oxide (NO) availability/signaling and that nitrate/nitrite can serve as a NO reservoir and enhance muscle performance. Here, we examined effects of nitrite on muscle strength, exercise capacity, and on contractile properties of fast-(extensor digitorum longus, EDL) and slow-twitch (soleus) muscles in SCD mice. Compared to controls, homozygotes (sickling) had decreased grip strength, impaired wheel running performance, and decreased muscle mass of fast-twitch, but not slow-twitch muscle. Nitrite treatment yielded increases in nitrite plasma levels in controls, heterozygotes, and homozygotes but decreases in muscle nitrite levels in heterozygotes and homozygotes. Regardless of genotype, nitrite yielded increases in grip strength, which were coupled with increases in specific force in EDL, but not in soleus muscle. Further, nitrite increased EDL, but not soleus, fatigability in all genotypes. Conversely, in controls, nitrite decreased, whereas in homozygotes, it increased EDL susceptibility to contraction-induced injury. Interestingly, nitrite yielded no changes in distances ran on the running wheel. These differential effects of nitrite in fast- and slow-twitch muscles suggest that its ergogenic effects would be observed in high-intensity/short exercises as found with grip force increases but no changes on wheel running distances. Further, the differential effects of nitrite in homozygotes and control animals suggests that sickling mice, which have altered NO availability/signaling, handle nitrite differently than do control animals.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Músculo Esquelético/fisiología , Nitritos/farmacología , Animales , Creatina Quinasa/sangre , Femenino , Masculino , Metahemoglobina/análisis , Metahemoglobina/metabolismo , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Nitritos/sangre , Nitritos/metabolismo , Globinas alfa/genética
5.
Hum Mol Genet ; 23(12): 3239-49, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463621

RESUMEN

In Duchenne muscular dystrophy (DMD) patients and the mouse model of DMD, mdx, dystrophin deficiency causes a decrease and mislocalization of muscle-specific neuronal nitric oxide synthase (nNOSµ), leading to functional impairments. Previous studies have shown that nitric oxide (NO) donation associated with anti-inflammatory action has beneficial effects in dystrophic mouse models. In this study, we have systematically investigated the effects of naproxcinod, an NO-donating naproxen derivative, on the skeletal and cardiac disease phenotype in mdx mice. Four-week-old mdx and C57BL/10 mice were treated with four different concentrations (0, 10, 21 and 41 mg/kg) of naproxcinod and 0.9 mg/kg of prednisolone in their food for 9 months. All mice were subjected to twice-weekly treadmill sessions, and functional and behavioral parameters were measured at 3, 6 and 9 months of treatment. In addition, we evaluated in vitro force contraction, optical imaging of inflammation, echocardiography and blood pressure (BP) at the 9-month endpoint prior to sacrifice. We found that naproxcinod treatment at 21 mg/kg resulted in significant improvement in hindlimb grip strength and a 30% decrease in inflammation in the fore- and hindlimbs of mdx mice. Furthermore, we found significant improvement in heart function, as evidenced by improved fraction shortening, ejection fraction and systolic BP. In addition, the long-term detrimental effects of prednisolone typically seen in mdx skeletal and heart function were not observed at the effective dose of naproxcinod. In conclusion, our results indicate that naproxcinod has significant potential as a safe therapeutic option for the treatment of muscular dystrophies.


Asunto(s)
Pruebas de Función Cardíaca/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/fisiopatología , Naproxeno/análogos & derivados , Donantes de Óxido Nítrico/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Miembro Posterior/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/patología , Naproxeno/administración & dosificación , Naproxeno/uso terapéutico , Donantes de Óxido Nítrico/uso terapéutico , Prednisolona/administración & dosificación , Prednisolona/uso terapéutico
6.
J Pathol ; 231(2): 223-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23794417

RESUMEN

The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective glucocorticoid receptor modulation by compound A represents a potential therapeutic strategy to improve dystrophic pathology.


Asunto(s)
Acetatos/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores de Glucocorticoides/agonistas , Tiramina/análogos & derivados , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , FN-kappa B/antagonistas & inhibidores , Reacción en Cadena en Tiempo Real de la Polimerasa , Tiramina/farmacología
7.
Arthritis Rheum ; 65(12): 3248-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24022788

RESUMEN

OBJECTIVE: Myositis is characterized by severe muscle weakness. We and others have previously shown that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of myositis. The present study was undertaken to identify perturbed pathways and assess their contribution to muscle disease in a mouse myositis model. METHODS: Stable isotope labeling with amino acids in cell culture (SILAC) was used to identify alterations in the skeletal muscle proteome of myositic mice in vivo. Differentially altered protein levels identified in the initial comparisons were validated using a liquid chromatography tandem mass spectrometry spike-in strategy and further confirmed by immunoblotting. In addition, we evaluated the effect of a proteasome inhibitor, bortezomib, on the disease phenotype, using well-standardized functional, histologic, and biochemical assessments. RESULTS: With the SILAC technique we identified significant alterations in levels of proteins belonging to the ER stress response, ubiquitin proteasome pathway (UPP), oxidative phosphorylation, glycolysis, cytoskeleton, and muscle contractile apparatus categories. We validated the myositis-related changes in the UPP and demonstrated a significant increase in the ubiquitination of muscle proteins as well as a specific increase in ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1) in myositis, but not in muscle affected by other dystrophies or normal muscle. Inhibition of the UPP with bortezomib significantly improved muscle function and also significantly reduced tumor necrosis factor α expression in the skeletal muscle of mice with myositis. CONCLUSION: Our findings indicate that ER stress activates downstream UPPs and contributes to muscle degeneration and that UCHL-1 is a potential biomarker for disease progression. UPP inhibition offers a potential therapeutic strategy for myositis.


Asunto(s)
Músculo Esquelético/metabolismo , Miositis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Ácidos Borónicos/farmacología , Bortezomib , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Ratones , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Miositis/patología , Inhibidores de Proteasoma/farmacología , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ubiquitinación/efectos de los fármacos
8.
Arthritis Rheum ; 64(11): 3750-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22806328

RESUMEN

OBJECTIVE: It is generally believed that muscle weakness in patients with polymyositis and dermatomyositis is due to autoimmune and inflammatory processes. However, it has been observed that there is a poor correlation between the suppression of inflammation and a recovery of muscle function in these patients. This study was undertaken to examine whether nonimmune mechanisms also contribute to muscle weakness. In particular, it has been suggested that an acquired deficiency of AMP deaminase 1 (AMPD1) may be responsible for muscle weakness in myositis. METHODS: We performed comprehensive functional, behavioral, histologic, molecular, enzymatic, and metabolic assessments before and after the onset of inflammation in a class I major histocompatibility complex (MHC)-transgenic mouse model of autoimmune inflammatory myositis. RESULTS: Muscle weakness and metabolic disturbances were detectable in the mice prior to the appearance of infiltrating mononuclear cells. Force contraction analysis of muscle function revealed that weakness was correlated with AMPD1 expression and was myositis specific. Decreasing AMPD1 expression resulted in decreased muscle strength in healthy mice. Fiber typing suggested that fast-twitch muscles were converted to slow-twitch muscles as myositis progressed, and microarray results indicated that AMPD1 and other purine nucleotide pathway genes were suppressed, along with genes essential to glycolysis. CONCLUSION: These data suggest that an AMPD1 deficiency is acquired prior to overt muscle inflammation and is responsible, at least in part, for the muscle weakness that occurs in the mouse model of myositis. AMPD1 is therefore a potential therapeutic target in myositis.


Asunto(s)
AMP Desaminasa/genética , Glucólisis/genética , Debilidad Muscular/metabolismo , Músculo Esquelético/enzimología , Miositis/metabolismo , AMP Desaminasa/inmunología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Glucólisis/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/patología , Ratones , Ratones Transgénicos , Morfolinos/farmacología , Actividad Motora/genética , Actividad Motora/inmunología , Contracción Muscular/genética , Contracción Muscular/inmunología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Debilidad Muscular/genética , Debilidad Muscular/inmunología , Músculo Esquelético/inmunología , Miositis/genética , Miositis/inmunología
9.
J Clin Invest ; 132(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981776

RESUMEN

Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Hígado/enzimología , Distrofia Muscular de Cinturas , Esfingomielina Fosfodiesterasa , Animales , Línea Celular Transformada , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Mutantes , Distrofia Muscular de Cinturas/enzimología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Esfingomielina Fosfodiesterasa/biosíntesis , Esfingomielina Fosfodiesterasa/genética
10.
J Physiol ; 589(Pt 5): 1195-208, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224224

RESUMEN

The dystrophin­glycoprotein complex (DGC) provides an essential link from the muscle fibre cytoskeleton to the extracellular matrix. In dystrophic humans and mdx mice, mutations in the dystrophin gene disrupt the structure of the DGC causing severe damage to muscle fibres. In frog muscles, transmission of force laterally from an activated fibre to the muscle surface occurs without attenuation, but lateral transmission of force has not been demonstrated in mammalian muscles. A unique 'yoke' apparatus was developed that attached to the epimysium of muscles midway between the tendons and enabled the measurement of lateral force. We now report that in muscles of young wild-type (WT) mice and rats, compared over a wide range of longitudinal forces, forces transmitted laterally showed little or no decrement. In contrast, for muscles of mdx mice and very old rats, forces transmitted laterally were impaired severely. Muscles of both mdx mice and very old rats showed major reductions in the expression of dystrophin. We conclude that during contractions, forces developed by skeletal muscles of young WT mice and rats are transmitted laterally from fibre to fibre through the DGC without decrement. In contrast, in muscles of dystrophic or very old animals, disruptions in DGC structure and function impair lateral transmission of force causing instability and increased susceptibility of fibres to contraction-induced injury.


Asunto(s)
Envejecimiento/fisiología , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Distrofia Muscular Animal/fisiopatología , Animales , Western Blotting , Distrofina/genética , Distrofina/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular Animal/metabolismo , Ratas
11.
BMC Cardiovasc Disord ; 11: 20, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21575230

RESUMEN

BACKGROUND: Cardiomyopathy in Duchenne muscular dystrophy (DMD) is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. METHODS: Three month old female mdx mice were exposed to the ß(1) receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188) (460 mg/kg/dose i.p. daily). Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD) and picrosirius red staining. RESULTS: BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p < 0.02) and cardiac fibrosis (p < 0.01) over 4 weeks compared to unexposed controls. P188 treatment of mdx mice significantly increased heart rate (median 593 vs. 667 bpm; p < 0.001) after 2 weeks and prevented a decrease in cardiac function in isoproterenol exposed mice (Shortening Fraction = 46 ± 6% vs. 35 ± 6%; p = 0.007) after 4 weeks. P188 treated mdx mice did not show significant differences in cardiac fibrosis, but demonstrated significantly increased EBD positive fibers. CONCLUSIONS: This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.


Asunto(s)
Agonistas Adrenérgicos beta , Cardiomiopatías/prevención & control , Fármacos Cardiovasculares/farmacología , Distrofina/deficiencia , Isoproterenol , Distrofia Muscular de Duchenne/tratamiento farmacológico , Poloxámero/farmacología , Análisis de Varianza , Animales , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/fisiopatología , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Fármacos Cardiovasculares/administración & dosificación , Colágeno/metabolismo , Modelos Animales de Enfermedad , Esquema de Medicación , Distrofina/genética , Femenino , Fibrosis , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos mdx , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Poloxámero/administración & dosificación , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
12.
Skelet Muscle ; 10(1): 37, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308300

RESUMEN

BACKGROUND: Nonsense or loss-of-function mutations in the non-lysosomal cysteine protease calpain-3 result in limb-girdle muscular dystrophy type 2A (LGMD2A). While calpain-3 is implicated in muscle cell differentiation, sarcomere formation, and muscle cytoskeletal remodeling, the physiological basis for LGMD2A has remained elusive. METHODS: Cell growth, gene expression profiling, and mitochondrial content and function were analyzed using muscle and muscle cell cultures established from healthy and calpain-3-deficient mice. Calpain-3-deficient mice were also treated with PPAR-delta agonist (GW501516) to assess mitochondrial function and membrane repair. The unpaired t test was used to assess the significance of the differences observed between the two groups or treatments. ANOVAs were used to assess significance over time. RESULTS: We find that calpain-3 deficiency causes mitochondrial dysfunction in the muscles and myoblasts. Calpain-3-deficient myoblasts showed increased proliferation, and their gene expression profile showed aberrant mitochondrial biogenesis. Myotube gene expression analysis further revealed altered lipid metabolism in calpain-3-deficient muscle. Mitochondrial defects were validated in vitro and in vivo. We used GW501516 to improve mitochondrial biogenesis in vivo in 7-month-old calpain-3-deficient mice. This treatment improved satellite cell activity as indicated by increased MyoD and Pax7 mRNA expression. It also decreased muscle fatigability and reduced serum creatine kinase levels. The decreased mitochondrial function also impaired sarcolemmal repair in the calpain-3-deficient skeletal muscle. Improving mitochondrial activity by acute pyruvate treatment improved sarcolemmal repair. CONCLUSION: Our results provide evidence that calpain-3 deficiency in the skeletal muscle is associated with poor mitochondrial biogenesis and function resulting in poor sarcolemmal repair. Addressing this deficit by drugs that improve mitochondrial activity offers new therapeutic avenues for LGMD2A.


Asunto(s)
Calpaína/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Musculares/metabolismo , Animales , Calpaína/genética , Línea Celular , Células Cultivadas , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/patología , Proteínas Musculares/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Biogénesis de Organelos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , PPAR delta/agonistas , Tiazoles/farmacología
13.
Sci Signal ; 10(495)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874604

RESUMEN

Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/citología , Oxidación-Reducción , Transducción de Señal , Actinas/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Condicionamiento Físico Animal , Especies Reactivas de Oxígeno/metabolismo
14.
Cell Death Differ ; 24(2): 330-342, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27834955

RESUMEN

Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic age for dysferlin-deficient mice. Restoring partial dystrophin expression by exon skipping improves mitochondrial function and offers potential to improve myofiber repair. These findings identify that mitochondrial deficit in muscular dystrophy compromises the repair of injured myofibers and show that this repair mechanism is distinct from and complimentary to the dysferlin-mediated repair of injured myofibers.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/metabolismo , Animales , Línea Celular , Disferlina/deficiencia , Disferlina/genética , Distrofina/antagonistas & inhibidores , Distrofina/genética , Distrofina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Contracción Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Mioblastos/citología , Mioblastos/metabolismo , Oligodesoxirribonucleótidos Antisentido/metabolismo , Ácido Pirúvico/farmacología , Imagen de Lapso de Tiempo
15.
In Vitro Cell Dev Biol Anim ; 42(3-4): 75-82, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16759152

RESUMEN

Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve- muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation as a contributing factor. Nerve- muscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.


Asunto(s)
Técnicas de Cocultivo , Músculo Esquelético , Unión Neuromuscular/fisiología , Nervios Periféricos , Técnicas de Cultivo de Tejidos , Ingeniería de Tejidos , Animales , Células Cultivadas , Estimulación Eléctrica , Femenino , Feto/anatomía & histología , Feto/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Nervios Periféricos/anatomía & histología , Nervios Periféricos/metabolismo , Embarazo , Ratas , Ratas Endogámicas F344 , Médula Espinal/citología , Células Madre/citología , Células Madre/fisiología
16.
PLoS One ; 11(5): e0155944, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27213537

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1ß (IL-1ß) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1ß pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1ß after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1ß with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with inhibitors that completely block IL-1ß, pathways upstream of IL-1ß production or combining various inhibitors may produce more favorable outcomes.


Asunto(s)
Miembro Anterior/fisiopatología , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Interleucina-1beta/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Miembro Anterior/efectos de los fármacos , Humanos , Inyecciones Subcutáneas , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Locomoción/efectos de los fármacos , Ratones , Ratones Endogámicos mdx , Actividad Motora/efectos de los fármacos , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/fisiopatología , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 5: 18246, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667898

RESUMEN

Repair and regeneration of the injured skeletal myofiber involves fusion of intracellular vesicles with sarcolemma and fusion of the muscle progenitor cells respectively. In vitro experiments have identified involvement of Annexin A1 (Anx A1) in both these fusion processes. To determine if Anx A1 contributes to these processes during muscle repair in vivo, we have assessed muscle growth and repair in Anx A1-deficient mouse (AnxA1-/-). We found that the lack of Anx A1 does not affect the muscle size and repair of myofibers following focal sarcolemmal injury and lengthening contraction injury. However, the lack of Anx A1 delayed muscle regeneration after notexin-induced injury. This delay in muscle regeneration was not caused by a slowdown in proliferation and differentiation of satellite cells. Instead, lack of Anx A1 lowered the proportion of differentiating myoblasts that managed to fuse with the injured myofibers by days 5 and 7 after notexin injury as compared to the wild type (w.t.) mice. Despite this early slowdown in fusion of Anx A1-/- myoblasts, regeneration caught up at later times post injury. These results establish in vivo role of Anx A1 in cell fusion required for myofiber regeneration and not in intracellular vesicle fusion needed for repair of myofiber sarcolemma.


Asunto(s)
Anexina A1/deficiencia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Cicatrización de Heridas/genética , Animales , Fusión Celular , Femenino , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/genética , Músculo Esquelético/anatomía & histología , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Sarcolema/metabolismo , Sarcolema/ultraestructura
18.
J Neurol Sci ; 356(1-2): 157-62, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26119397

RESUMEN

The dysferlin-deficient A/J mouse strain represents a homologous model for limb-girdle muscular dystrophy 2B. We evaluated the disease phenotype in 10 month old A/J mice compared to two dysferlin-sufficient, C57BL/6 and A/JOlaHsd, mouse lines to determine which functional end-points are sufficiently sensitive to define the disease phenotype for use in preclinical studies in the A/J strain. A/J mice had significantly lower open field behavioral activity (horizontal activity, total distance, movement time and vertical activity) when compared to C57BL/6 and A/JoIaHsd mice. Both A/J and A/JOIaHsd mice showed decreases in latency to fall with rotarod compared to C57BL/6. No changes were detected in grip strength, force measurements or motor coordination between these three groups. Furthermore, we have found that A/J muscle shows significantly increased levels of the pro-inflammatory cytokine TNF-α when compared to C57BL/6 mice, indicating an activation of NF-κB signaling as part of the inflammatory response in dysferlin-deficient muscle. Therefore, we assessed the effect of celastrol (a potent NF-κB inhibitor) on the disease phenotype in female A/J mice. Celastrol treatment for four months significantly reduced the inflammation in A/J muscle; however, it had no beneficial effect in improving muscle function, as assessed by grip strength, open field activity, and in vitro force contraction. In fact, celastrol treated mice showed a decrease in body mass, hindlimb grip strength and maximal EDL force. These findings suggest that inhibition of inflammation alone may not be sufficient to improve the muscle disease phenotype in dysferlin-deficient mice and may require combination therapies that target membrane stability to achieve a functional improvement in skeletal muscle.


Asunto(s)
Inflamación/tratamiento farmacológico , Proteínas de la Membrana/deficiencia , Distrofia Muscular de Cinturas/tratamiento farmacológico , Triterpenos/toxicidad , Análisis de Varianza , Animales , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Disferlina , Ecocardiografía , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/complicaciones , Triterpenos Pentacíclicos
19.
Neurol Res ; 26(4): 388-94, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15198864

RESUMEN

Muscle-Nerve-Muscle (MNM) is the reinnervation of a denervated (recipient) muscle via a nerve graft inserted into the belly of an innervated (donor) muscle. MNM is studied for the reinnervation of intrinsic denervated somatic skeletal muscle by evaluating both restored muscle contractile ability and innervation state. In a rat model, muscle function is tested following MNM neurotization from an innervated (donor), extensor digitorum longus muscle to a denervated (recipient), peroneus digit quinti (PDQ) muscle. PDQ muscle cross-sections labeled for neural cell adhesion molecule protein (NCAM), a marker for fiber denervation. MNM neurotization results in the recovery of PDQ muscle force generating capacity (58% of Normal-control) and a significantly lower percentage of residual muscle fiber denervation (38% denervated) compared with the Denervated-control (79% denervated) group. MNM neurotization reinnervates 62% of the previously denervated muscle fibers in the PDQ muscle. No decrement in force capacity is observed in the donor EDL muscle. Nerve grafting for MNM neurotization may restore modest contractile function to denervated muscle and reinnervate relatively more denervated muscle fibers than the Denervated-control.


Asunto(s)
Desnervación Muscular , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Regeneración Nerviosa/fisiología , Transferencia de Nervios , Anatomía Transversal/métodos , Animales , Bungarotoxinas/metabolismo , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Lateralidad Funcional , Inmunohistoquímica/métodos , Modelos Animales , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/trasplante , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Cloruro de Tolonio
20.
Plast Reconstr Surg ; 112(5): 1336-46, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14504517

RESUMEN

The authors tested the hypothesis that, after denervation and reinnervation of skeletal muscle, observed deficits in specific force can be completely attributed to the presence of denervated muscle fibers. The peroneal nerve innervating the extensor digitorum longus muscle in rats was sectioned and the distal stump was coapted to the proximal stump, allowing either a large number of motor axons (nonreduced, n = 12) or a drastically reduced number of axons access to the distal nerve stump (drastically reduced, n = 18). A control group of rats underwent exposure of the peroneal nerve, without transection, followed by wound closure (control, n = 9). Four months after the operation, the maximum tetanic isometric force (Fo) of the extensor digitorum longus muscle was measured in situ and the specific force (sFo) was calculated. Cross-sections of the muscles were labeled for neural cell adhesion molecule (NCAM) protein to distinguish between innervated and denervated muscle fibers. Compared with extensor digitorum longus muscles from rats in the control (295 +/- 11 kN/m2) and nonreduced (276 +/- 12 kN/m2) groups, sFo of the extensor digitorum longus muscles from animals in the drastically reduced group was decreased (227 +/- 15 kN/m2, p < 0.05). The percentage of denervated muscle fibers in the extensor digitorum longus muscles from animals in the drastically reduced group (18 +/- 3 percent) was significantly higher than in the control (3 +/- 1 percent) group, but not compared with the nonreduced (9 +/- 2 percent) group. After exclusion of the denervated fibers, sFo did not differ between extensor digitorum longus muscles from animals in the drastically reduced (270 +/- 20 kN/m2), nonreduced (301 +/- 13 kN/m2), or control (303 +/- 10 kN/m2) groups. The authors conclude that, under circumstances of denervation and rapid reinnervation, the decrease in sFo of muscle can be attributed to the presence of denervated muscle fibers.


Asunto(s)
Desnervación Muscular , Músculo Esquelético/inervación , Animales , Axones/fisiología , Masculino , Músculo Esquelético/fisiología , Distribución Aleatoria , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA