Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glia ; 71(11): 2679-2695, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641212

RESUMEN

Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.


Asunto(s)
Glioblastoma , Glioma , Humanos , Masculino , Animales , Ratones , Microglía , Macrófagos , Encéfalo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
2.
J Neuroinflammation ; 20(1): 47, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829182

RESUMEN

AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.


Asunto(s)
Fluorodesoxiglucosa F18 , Microglía , Animales , Ratones , Microglía/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Progranulinas/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
3.
EMBO J ; 36(13): 1837-1853, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28559417

RESUMEN

Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (µPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-µPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Glucosa/metabolismo , Glicoproteínas de Membrana/genética , Microglía/fisiología , Mutación Missense , Perfusión , Receptores Inmunológicos/genética , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Proteínas Mutantes/genética , Tomografía de Emisión de Positrones
5.
J Nucl Med ; 63(10): 1459-1462, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35589403

RESUMEN

With great interest, our independent groups of scientists located in Korea and Germany recognized the use of a very similar methodologic approach to quantify the uptake of radioactive glucose (18F-FDG) at the cellular level. The focus of our investigations was to disentangle microglial 18F-FDG uptake. To do so, CD11b immunomagnetic cell sorting was applied to isolate microglia cells after in vivo 18F-FDG injection, to allow simple quantification via a γ-counter. Importantly, this technique reveals a snapshot of cellular glucose uptake in living mice at the time of injection since 18F-FDG is trapped by hexokinase phosphorylation without a further opportunity to be metabolized. Both studies indicated high 18F-FDG uptake of single CD11b-positive microglia cells and a significant increase in microglial 18F-FDG uptake when this cell type is activated in the presence of amyloid pathology. Furthermore, another study noticed that immunomagnetic cell sorting after tracer injection facilitated determination of high 18F-FDG uptake in myeloid cells in a range of tumor models. Here, we aim to discuss the rationale for single-cell radiotracer allocation via immunomagnetic cell sorting (scRadiotracing) by providing examples of promising applications of this innovative technology in neuroscience, oncology, and radiochemistry.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Animales , Glucosa , Hexoquinasa , Ratones , Tomografía de Emisión de Positrones/métodos , Radioquímica
6.
Front Aging Neurosci ; 14: 854031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431893

RESUMEN

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

7.
Neuron ; 109(7): 1100-1117.e10, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33606969

RESUMEN

Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.


Asunto(s)
Microglía/fisiología , Sustancia Blanca/citología , Sustancia Blanca/crecimiento & desarrollo , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Animales , Apolipoproteínas E/genética , Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Inmunohistoquímica , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/ultraestructura , Vaina de Mielina/metabolismo , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética , Análisis de Secuencia de ARN , Transducción de Señal/fisiología , Análisis de la Célula Individual
8.
Theranostics ; 11(18): 8964-8976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522221

RESUMEN

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Receptores de GABA/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Inmunomodulación/inmunología , Inmunomodulación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Pioglitazona/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/fisiología , Factores Sexuales
9.
Sci Transl Med ; 13(615): eabe5640, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644146

RESUMEN

2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer's disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedades Neurodegenerativas , Humanos , Glucosa , Microglía , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Ratones
10.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917267

RESUMEN

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Fosfolipasa C gamma/genética , Animales , Técnicas de Sustitución del Gen , Variación Genética , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Fosfolipasa C gamma/inmunología
11.
EMBO Mol Med ; 12(4): e11227, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32154671

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease-associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full-length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α-secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α-secretase-mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho-SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid ß-peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all soluble TREM2 was 4D9-bound. Moreover, in a mouse model for Alzheimer's disease-related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease-associated state.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Glicoproteínas de Membrana/inmunología , Microglía , Mieloma Múltiple , Receptores Inmunológicos/inmunología , Péptidos beta-Amiloides , Animales , Línea Celular Tumoral , Femenino , Macrófagos , Ratones , Microglía/patología , Ratas , Ratas Wistar
12.
Biol Psychiatry ; 83(5): 428-437, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129943

RESUMEN

BACKGROUND: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a promising drug target for the treatment of Alzheimer's disease. Prolonged BACE1 inhibition interferes with structural and functional synaptic plasticity in mice, most likely by altering the metabolism of BACE1 substrates. Seizure protein 6 (SEZ6) is predominantly cleaved by BACE1, and Sez6 knockout mice share some phenotypes with BACE1 inhibitor-treated mice. We investigated whether SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations. METHODS: The function of NB-360, a novel blood-brain barrier penetrant and orally available BACE1 inhibitor, was verified by immunoblotting. In vivo microscopy was applied to monitor the impact of long-term pharmacological BACE1 inhibition on dendritic spines in the cerebral cortex of constitutive and conditional Sez6 knockout mice. Finally, synaptic functions were characterized using electrophysiological field recordings in hippocampal slices. RESULTS: BACE1 enzymatic activity was strongly suppressed by NB-360. Prolonged NB-360 treatment caused a reversible spine density reduction in wild-type mice, but it did not affect Sez6-/- mice. Knocking out Sez6 in a small subset of mature neurons also prevented the structural postsynaptic changes induced by BACE1 inhibition. Hippocampal long-term potentiation was decreased in both chronic BACE1 inhibitor-treated wild-type mice and vehicle-treated Sez6-/- mice. However, chronic NB-360 treatment did not alter long-term potentiation in CA1 neurons of Sez6-/- mice. CONCLUSIONS: Our results suggest that SEZ6 plays an important role in maintaining normal dendritic spine dynamics. Furthermore, SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
13.
Mol Neurodegener ; 13(1): 49, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185230

RESUMEN

BACKGROUND: The R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer's disease. Mouse models accurately reproducing phenotypes observed in Alzheimer' disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer's disease. METHODS: A CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer's patients carrying the TREM2 R47H risk factor. RESULTS: Two independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant. CONCLUSIONS: The Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Variación Genética/genética , Humanos , Ratones Transgénicos , Microglía/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo
14.
EMBO Mol Med ; 8(9): 992-1004, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402340

RESUMEN

Immunotherapeutic approaches are currently the most advanced treatments for Alzheimer's disease (AD). Antibodies against amyloid ß-peptide (Aß) bind to amyloid plaques and induce their clearance by microglia via Fc receptor-mediated phagocytosis. Dysfunctions of microglia may play a pivotal role in AD pathogenesis and could result in reduced efficacy of antibody-mediated Aß clearance. Recently, heterozygous mutations in the triggering receptor expressed on myeloid cells 2 (TREM2), a microglial gene involved in phagocytosis, were genetically linked to late onset AD Loss of TREM2 reduces the ability of microglia to engulf Aß. We have now investigated whether loss of TREM2 affects the efficacy of immunotherapeutic approaches. We show that anti-Aß antibodies stimulate Aß uptake and amyloid plaque clearance in a dose-dependent manner in the presence or absence of TREM2. However, TREM2-deficient N9 microglial cell lines, macrophages as well as primary microglia showed significantly reduced uptake of antibody-bound Aß and as a consequence reduced clearance of amyloid plaques. Titration experiments revealed that reduced efficacy of amyloid plaque clearance by Trem2 knockout cells can be compensated by elevating the concentration of therapeutic antibodies.


Asunto(s)
Amiloide/metabolismo , Glicoproteínas de Membrana/deficiencia , Neuroglía/inmunología , Fagocitosis , Receptores Inmunológicos/deficiencia , Animales , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA