Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 72(9): 1758-1773, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37019619

RESUMEN

OBJECTIVE: Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN: Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS: Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION: We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Factor A de Crecimiento Endotelial Vascular , Neoplasias Hepáticas/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , PPAR gamma , Microambiente Tumoral , Antígeno B7-H1
2.
Clin Genet ; 101(1): 110-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494659

RESUMEN

The treatment of recessive dystrophic epidermolysis bullosa (RDEB) remains challenging. Elevated IgE levels have previously been reported in several RDEB patients. In this prospective, single-centre, open intervention study, elevated IgE levels were seen in 11 out of 12 patients with intense pruritus, and the patients with elevated IgE levels received anti-IgE therapy every 4 weeks for at least three cycles. Compared with the baseline, 10 patients with RDEB had good clinical outcomes with enhanced wound healing, a reduction in Birmingham (epidermolysis bullosa) EB severity score by 15%, a reduction in affected body surface area by 23.3%, amelioration of skin inflammation, and an increase in type VII collagen deposition by 13.1-fold. All the patients had a good tolerance to anti-IgE therapy. Furthermore, patients with higher IgE levels tended to have higher disease severity and more favorable clinical outcomes. Our report also suggested the potential role of IgE in the pathogenesis of inflammatory conditions associated with RDEB. (ChiCTR1900021437).


Asunto(s)
Anticuerpos Antiidiotipos/uso terapéutico , Epidermólisis Ampollosa Distrófica/tratamiento farmacológico , Adolescente , Adulto , Anticuerpos Antiidiotipos/administración & dosificación , Anticuerpos Antiidiotipos/efectos adversos , Autoinmunidad , Biopsia , Niño , Colágeno Tipo VII/inmunología , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Epidermólisis Ampollosa Distrófica/diagnóstico , Epidermólisis Ampollosa Distrófica/etiología , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Piel/inmunología , Piel/metabolismo , Piel/patología , Resultado del Tratamiento , Cicatrización de Heridas , Adulto Joven
3.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296646

RESUMEN

There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and ß may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.


Asunto(s)
Metabolismo de los Lípidos , Prolactina , Humanos , Metabolismo de los Lípidos/fisiología , Prolactina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hormonas/metabolismo , Tejido Adiposo/metabolismo , Insulina/metabolismo , Hormonas Tiroideas/metabolismo , Epinefrina , Lípidos , Factores de Transcripción/metabolismo , Agua/metabolismo
4.
Gut ; 69(2): 365-379, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31076403

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC), mostly developed in fibrotic/cirrhotic liver, exhibits relatively low responsiveness to immune checkpoint blockade (ICB) therapy. As myeloid-derived suppressor cell (MDSC) is pivotal for immunosuppression, we investigated its role and regulation in the fibrotic microenvironment with an aim of developing mechanism-based combination immunotherapy. DESIGN: Functional significance of MDSCs was evaluated by flow cytometry using two orthotopic HCC models in fibrotic liver setting via carbon tetrachloride or high-fat high-carbohydrate diet and verified by clinical specimens. Mechanistic studies were conducted in human hepatic stellate cell (HSC)-peripheral blood mononuclear cell culture systems and fibrotic-HCC patient-derived MDSCs. The efficacy of single or combined therapy with anti-programmed death-1-ligand-1 (anti-PD-L1) and a clinically trialled BET bromodomain inhibitor i-BET762 was determined. RESULTS: Accumulation of monocytic MDSCs (M-MDSCs), but not polymorphonuclear MDSCs, in fibrotic livers significantly correlated with reduced tumour-infiltrating lymphocytes (TILs) and increased tumorigenicity in both mouse models. In human HCCs, the tumour-surrounding fibrotic livers were markedly enriched with M-MDSC, with its surrogate marker CD33 significantly associated with aggressive tumour phenotypes and poor survival rates. Mechanistically, activated HSCs induced monocyte-intrinsic p38 MAPK signalling to trigger enhancer reprogramming for M-MDSC development and immunosuppression. Treatment with p38 MAPK inhibitor abrogated HSC-M-MDSC crosstalk to prevent HCC growth. Concomitant with patient-derived M-MDSC suppression by i-BET762, combined treatment with anti-PD-L1 synergistically enhanced TILs, resulting in tumour eradication and prolonged survival in the fibrotic-HCC mouse model. CONCLUSION: Our results signify how non-tumour-intrinsic properties in the desmoplastic microenvironment can be exploited to reinstate immunosurveillance, providing readily translatable combination strategies to empower HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular/terapia , Inmunoterapia/métodos , Neoplasias Hepáticas/terapia , Animales , Antígeno B7-H1/antagonistas & inhibidores , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/inmunología , Reprogramación Celular/inmunología , Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Células Estrelladas Hepáticas/inmunología , Humanos , Tolerancia Inmunológica , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/terapia , Masculino , Ratones Endogámicos C57BL , Monocitos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Transducción de Señal/fisiología , Células Tumorales Cultivadas , Microambiente Tumoral , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
5.
Clin Genet ; 98(2): 179-184, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32484238

RESUMEN

Epidermolysis bullosa (EB) is a heritable blistering disorder. We performed a next-generation sequencing-based multigene panel test and successfully predicted 100% of the EB types, including, 36 EB simplex (EBS), 13 junctional EB (JEB), 86 dystrophic EB (DEB), and 3 Kindler EB. Chinese JEB and recessive DEB (RDEB) patients have relatively mild phenotypes; for severe type separately accounts for 45.5% and 23.8%, respectively. We identified 96 novel and 49 recurrent pathogenic variants in 11 genes, although we failed to detect the second mutation in one JEB and five RDEB patients. We identified one novel p.E475K mosaic mutation in the clinically normal mother of one out of 13 EBS patients with KRT5 mutations, one recurrent p.G2034R mosaic mutation, and one novel p.G2043R mosaic mutation in the clinically normal relatives of two out of 19 dominant DEB patients. This study shows that next-generation technology could be an effective tool in diagnosing EB.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa/genética , Queratina-14/genética , Queratina-5/genética , China/epidemiología , Epidermólisis Ampollosa/clasificación , Epidermólisis Ampollosa/epidemiología , Epidermólisis Ampollosa/patología , Epidermólisis Ampollosa de la Unión/clasificación , Epidermólisis Ampollosa de la Unión/epidemiología , Epidermólisis Ampollosa de la Unión/patología , Femenino , Predisposición Genética a la Enfermedad , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mosaicismo , Mutación/genética , Fenotipo
6.
Nucleic Acids Res ; 46(17): 8832-8847, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29992318

RESUMEN

Genomic sequencing of hepatocellular carcinoma (HCC) uncovers a paucity of actionable mutations, underscoring the necessity to exploit epigenetic vulnerabilities for therapeutics. In HCC, EZH2-mediated H3K27me3 represents a major oncogenic chromatin modification, but how it modulates the therapeutic vulnerability of signaling pathways remains unknown. Here, we show EZH2 acts antagonistically to AKT signaling in maintaining H3K27 methylome through epigenetic silencing of IGFBP4. ChIP-seq revealed enrichment of Ezh2/H3K27me3 at silenced loci in HBx-transgenic mouse-derived HCCs, including Igfbp4 whose down-regulation significantly correlated with EZH2 overexpression and poor survivals of HCC patients. Functional characterizations demonstrated potent growth- and invasion-suppressive functions of IGFBP4, which was associated with transcriptomic alterations leading to deregulation of multiple signaling pathways. Mechanistically, IGFBP4 stimulated AKT/EZH2 phosphorylation to abrogate H3K27me3-mediated silencing, forming a reciprocal feedback loop that suppressed core transcription factor networks (FOXA1/HNF1A/HNF4A/KLF9/NR1H4) for normal liver homeostasis. Consequently, the in vivo tumorigenicity of IGFBP4-silenced HCC cells was vulnerable to pharmacological inhibition of EZH2, but not AKT. Our study unveils chromatin regulation of a novel liver tumor suppressor IGFBP4, which constitutes an AKT-EZH2 reciprocal loop in driving H3K27me3-mediated epigenetic reprogramming. Defining the aberrant chromatin landscape of HCC sheds light into the mechanistic basis of effective EZH2-targeted inhibition.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Código de Histonas/genética , Histonas/metabolismo , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/deficiencia , Neoplasias Hepáticas/genética , Proteínas Supresoras de Tumor/deficiencia , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Femenino , Humanos , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Neoplasias Hepáticas Experimentales/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Terapia Molecular Dirigida , Pronóstico , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Neoplásico/genética , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Sci ; 110(3): 1085-1095, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30582655

RESUMEN

Ovarian cancer is the most lethal cancer of the female reproductive system. In that regard, several epidemiological studies suggest that long-term exposure to estrogen could increase ovarian cancer risk, although its precise role remains controversial. To decipher a mechanism for this, we previously generated a mathematical model of how estrogen-mediated upregulation of the transcription factor, E2F6, upregulates the ovarian cancer stem/initiating cell marker, c-Kit, by epigenetic silencing the tumor suppressor miR-193a, and a competing endogenous (ceRNA) mechanism. In this study, we tested that previous mathematical model, showing that estrogen treatment of immortalized ovarian surface epithelial cells upregulated both E2F6 and c-KIT, but downregulated miR-193a. Luciferase assays further confirmed that microRNA-193a targets both E2F6 and c-Kit. Interestingly, ChIP-PCR and bisulphite pyrosequencing showed that E2F6 also epigenetically suppresses miR-193a, through recruitment of EZH2, and by a complex ceRNA mechanism in ovarian cancer cell lines. Importantly, cell line and animal experiments both confirmed that E2F6 promotes ovarian cancer stemness, whereas E2F6 or EZH2 depletion derepressed miR-193a, which opposes cancer stemness, by alleviating DNA methylation and repressive chromatin. Finally, 118 ovarian cancer patients with miR-193a promoter hypermethylation had poorer survival than those without hypermethylation. These results suggest that an estrogen-mediated E2F6 ceRNA network epigenetically and competitively inhibits microRNA-193a activity, promoting ovarian cancer stemness and tumorigenesis.


Asunto(s)
Factor de Transcripción E2F6/genética , Células Madre Neoplásicas/patología , Neoplasias Ováricas/genética , ARN/genética , Transcripción Genética/genética , Animales , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Estrógenos/efectos adversos , Femenino , Genes Supresores de Tumor/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Ováricas/etiología , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
8.
BMC Cancer ; 19(1): 129, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736753

RESUMEN

BACKGROUND: Serum exosomal microRNAs (miRNAs) have been suggested as novel biomarkers for various diseases, especially gastric cancer (GC). But circulating biomarkers for Chronic atrophic gastritis (CAG) which is defined as precancrerous lesions of GC remain largely elusive. To investigate serum exosomal miRNAs that are differently expressed in CAG patients and Chronic nonatrophic gastritis (CNAG) may be helpful for its diagnosis and therapy. METHODS: Patients were recruited according to the diagnosis and exclusioncriteria. RNA was extracted from serum exosomes of 30 CAG and 30 CNAG patients. The miRNA expression profiles were analyzed by next generation sequencing and were validated by qRT-PCR. Receiver operating characteristic (ROC) analysis has been used to evaluate the diagnostic value. RESULTS: 30 CAG patients and 30 CNAG patients were recruited in our study. sRNA-seq results showed that hsa-miR-3591-3p, - 122-3p, and - 122-5p of the top 10 miRNAs (hsa-miR-148a-3p, - 122-3p, - 486-3p, -451a, - 122-5p, - 3591-3p, - 486-5p, -151a-3p, -92a-3p, -320a) were significantly upregulated in exosomes from CAG patients versus those from CNAG patients, but hsa-miR-451a, -151a-3p, and -92a-3p were significantly downregulated. Furthermore, qRT-PCR analysis confirmed that hsa-miR-122-5p and hsa-miR-122-3p were significantly upregulated in CAG samples, but hsa-miR-122-3p hadnot a steable expression. ROC curves showed that the AUC for hsa-miR-122-5p was 0.67 (95% CI 0.52-0.82, SE 62%, SP 86%). A sum of the four miRNAs (panel 1, hsa-miR-122-5p, -451a, -151a-3p, and -92a-3p) did not significantly improve the diagnostic potential (AUC 0.63, 95% CI 0.47 to 0.78). Correlation analysis showed that the expression of hsa-miR-122-5p differed significantly between patients based on atrophic (Moderate atrophic vs. Absent, P value was 0.036.) and IM (compare moderate-severe, absent and mild P values were 0.001 and 0.014, respectively). However, there were no differences between groups based on age, gender, dysplasia, or chronic or active inflammation. CONCLUSION: These results suggested that hsa-miR-122-5p in serum exosomes might serve as a potential biomarker for CAG diagnosis. TRIAL REGISTRATION: Chinese Clinical Trial Registy ( ChiCTR-IOR-16008027 , Date of Registration:2016-03-01).


Asunto(s)
Biomarcadores , MicroARN Circulante , Exosomas , Gastritis Atrófica/sangre , Gastritis Atrófica/genética , MicroARNs/genética , Adulto , Biología Computacional/métodos , Femenino , Gastritis Atrófica/diagnóstico , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida/métodos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Curva ROC
9.
J Pathol ; 238(5): 651-64, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26800240

RESUMEN

Enhancer of zeste homolog 2 (EZH2) catalyses histone H3 lysine 27 trimethylation (H3K27me3) to silence tumour-suppressor genes in hepatocellular carcinoma (HCC) but the process of locus-specific recruitment remains elusive. Here we investigated the transcription factors involved and the molecular consequences in HCC development. The genome-wide distribution of H3K27me3 was determined by chromatin immunoprecipitation coupled with high-throughput sequencing or promoter array analyses in HCC cells from hepatitis B virus (HBV) X protein transgenic mouse and human cell models. Transcription factor binding site analysis was performed to identify EZH2-interacting transcription factors followed by functional characterization. Our cross-species integrative analysis revealed a crucial link between Yin Yang 1 (YY1) and EZH2-mediated H3K27me3 in HCC. Gene expression analysis of human HBV-associated HCC specimens demonstrated concordant overexpression of YY1 and EZH2, which correlated with poor survival of patients in advanced stages. The YY1 binding motif was significantly enriched in both in vivo and in vitro H3K27me3-occupied genes, including genes for 15 tumour-suppressive microRNAs. Knockdown of YY1 reduced not only global H3K27me3 levels, but also EZH2 and H3K27me3 promoter occupancy and DNA methylation, leading to the transcriptional up-regulation of microRNA-9 isoforms in HCC cells. Concurrent EZH2 knockdown and 5-aza-2'-deoxycytidine treatment synergistically increased the levels of microRNA-9, which reduced the expression and transcriptional activity of nuclear factor-κB (NF-κB). Functionally, YY1 promoted HCC tumourigenicity and inhibited apoptosis of HCC cells, at least partially through NF-κB activation. In conclusion, YY1 overexpression contributes to EZH2 recruitment for H3K27me3-mediated silencing of tumour-suppressive microRNAs, thereby activating NF-κB signalling in hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Silenciador del Gen , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Sitios de Unión , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Lisina , Metilación , Ratones Desnudos , Ratones Transgénicos , MicroARNs/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Transfección , Carga Tumoral , Regulación hacia Arriba , Proteínas Reguladoras y Accesorias Virales , Factor de Transcripción YY1/genética
10.
Mol Cancer ; 15: 9, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26801246

RESUMEN

BACKGROUND: NF-κB signaling pathway plays an important role in gastric carcinogenesis. The basic expression and functional role of NFKB1 and RELA (components of canonical NF-κB pathway) in gastric cancer (GC) have not been well elucidated. In this study, the role of NFKB1 and RELA in gastric tumorigenesis will be investigated and their regulation by microRNAs (miRNAs) will be deeply explored. METHODS: The mRNA and protein expression of NFKB1 and RELA were investigated by qRT-PCR and Western blot in GC cell lines and primary tumors. The functional roles of NFKB1 and RELA in GC were demonstrated by MTT proliferation assay, monolayer colony formation, cell invasion and migration, cell cycle analysis and in vivo study through siRNA mediated knockdown. Identification of NFKB1 as a direct target of tumor suppressor miRNA miR-508-3p was achieved by expression regulation assays together with dual luciferase activity experiments. RESULTS: NFKB1 and RELA were up-regulated in GC cell lines and primary tumors compared with normal gastric epithelium cells and their upregulation correlation with poor survival in GC. siRNA mediated knockdown of NFKB1 or RELA exhibited anti-oncogenic effect both in vitro and in vivo. NFKB1 was further revealed to be a direct target of miR-508-3p in gastric tumorigenesis and their expression showed negative correlation in primary GC samples. miR-508-3p was down-regulated in GC cells compared with normal gastric epithelium samples and its ectopic expression in GC cell lines also exerts tumor suppressor function. NFKB1 re-expression was found to partly abolish the tumor-suppressive effect of miR-508-3p in GC. CONCLUSION: All these findings supports that canonical NF-κB signaling pathway is activated in GC at least by the inactivation of miR-508-3p and this might have therapeutic potential in GC treatment.


Asunto(s)
Carcinogénesis/genética , Silenciador del Gen , MicroARNs/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factor de Transcripción ReIA/metabolismo , Secuencia de Bases , Carcinogénesis/patología , Línea Celular Tumoral , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Datos de Secuencia Molecular , Análisis Multivariante , Modelos de Riesgos Proporcionales , Transducción de Señal/genética , Regulación hacia Arriba/genética
11.
Mol Cancer ; 14: 52, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25743273

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. METHODS: The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. RESULTS: We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. CONCLUSION: In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma/genética , Genes Supresores de Tumor/fisiología , MicroARNs/genética , Fosfoproteínas/genética , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fase de Descanso del Ciclo Celular/genética , Factores de Transcripción , Proteínas Señalizadoras YAP
12.
J Transl Med ; 12: 281, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25288334

RESUMEN

BACKGROUND: Aberrant AKT activation contributes to gastric cancer cell survival and chemotherapy resistance, however its regulation is poorly understood. microRNAs have been established to be important regulators in gastric carcinogenesis. Here, we showed the functional role and putative target of let-7b and let-7g (let-7b/g) in gastric carcinogenesis. METHODS: The expression of let-7b/g in gastric cancer cell lines and primary tumors were evaluated by miRNA qRT-PCR. The putative target gene of let-7b/g was explored by TargetScan followed by further validation. Functional analyses including MTT proliferation, monolayer colony formation, cell invasion assays and in vivo study were performed in both ectopic expression and knockdown approaches. RESULTS: let-7b/g was found down-regulated in gastric cancer and its downregulation was associated with poor survival and correlated with lymph node metastasis. let-7b/g inhibited AKT2 expression by directly binding to its 3'UTR, reduced p-AKT (S473) activation and suppressed expression of the downstream effector pS6. AKT2 mRNA expression showed negative correlation with the expression of let-7b/g in primary tumors. Short interfering RNA (siRNA) mediated knockdown of AKT2 phenocopied the tumor-suppressive effects of let-7b/g. Moreover, AKT2 re-expression partly abrogated the growth-inhibitory effect of let-7b/g. CONCLUSION: In conclusion, our findings reveal decreased let-7b/g contributes to aberrant AKT activation in gastric tumorigenesis and provide a potential therapeutic strategy for gastric cancer.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Silenciador del Gen , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Datos de Secuencia Molecular , Unión Proteica/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Análisis de Supervivencia , Regulación hacia Arriba
13.
J Transl Med ; 12: 80, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24674326

RESUMEN

BACKGROUND: Yin Yang 1 (YY1) is a transcription factor that regulates diverse biological processes and increasing recognized to have important roles in carcinogenesis. The function and clinical significance of YY1 in gastric adenocarcinoma (GAC) have not been elucidated. METHODS: In this study, the functional role of YY1 in gastric cancer was investigated by MTT proliferation assays, monolayer colony formation, cell cycle analysis, signaling pathway analysis, Western blot analysis and in vivo study through YY1 knockdown or overexpression. Immunohistochemical study with YY1 antibody was performed on tissue microarray consisting of 247 clinical GAC samples. The clinical correlation and prognosis significance were evaluated. RESULTS: YY1 expression was up-regulated in gastric cancer cell lines and primary gastric cancers. Knocking down YY1 by siYY1 inhibited cell growth, inducing G1 phase accumulation and apoptosis. Ectopic YY1 expression enhanced cell proliferation in vitro and in vivo. Knocking down YY1 in gastric cancer cells suppressed proliferation by inhibiting Wnt/ß-catenin pathway, whereas its overexpression exerted oncogenic property by activating Wnt/ß-catenin pathway. In primary GAC samples, YY1 nuclear expression correlated with shorter survival and predicted poor prognosis in early stage GACs. CONCLUSION: Our data demonstrated that YY1 contributes to gastric carcinogenesis in gastric cancer. In early stage GACs YY1 might serve as a poor prognostic marker and possibly as a potential therapeutic target.


Asunto(s)
Adenocarcinoma/fisiopatología , Neoplasias Gástricas/fisiopatología , Factor de Transcripción YY1/fisiología , Secuencia de Bases , Western Blotting , Carcinogénesis , Línea Celular Tumoral , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa , Regulación hacia Arriba
14.
Mol Ther ; 21(2): 388-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23207693

RESUMEN

Blockade of transforming growth factor-ß (TGF-ß) signaling by Smad7 gene therapy is known to prevent experimental renal fibrosis. This study investigated whether Smad7 suppresses renal fibrosis via altering the renal expression of fibrosis-related microRNAs. Application of gene therapy into diseased kidneys of obstructive nephropathy and kidney cells by overexpressing Smad7 restored miR-29b but inhibited the expression of miR-192 and miR-21, resulting in blockade of renal fibrosis. Furthermore, Smad7 overexpression also suppressed advanced glycated end products- and angiotensin II-regulated expression of these microRNAs. In contrast, disruption of Smad7 gene in mice demonstrated opposite results by enhancing the loss of miR-29b and upregulation of miR-192 and miR-21, resulting in promotion of renal fibrosis in ligated kidneys of a model of obstructive nephropathy. More importantly, treatment with anti-miR-29b, miR-21 and miR-192 mimics in Smad7 overexpressing tubular epithelial cells abrogated the suppressive function of Smad7 on renal fibrosis, suggesting that these microRNAs act downstream of Smad7 to override the Smad7 function. In conclusion, Smad7 protects kidneys from fibrosis by regulating TGF-ß/Smad3-mediated renal expression of miR-21, miR-192, and miR-29b. Restored renal miR-29b but suppressed miR-192 and miR-21 may be a mechanism by which gene therapy with Smad7 inhibits renal fibrosis.


Asunto(s)
Enfermedades Renales/prevención & control , MicroARNs/genética , Proteína smad7/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Western Blotting , Línea Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibrosis , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Inmunohistoquímica , Hibridación in Situ , Enfermedades Renales/genética , Enfermedades Renales/patología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
15.
Microb Biotechnol ; 17(8): e14533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39075735

RESUMEN

Marine microorganisms are increasingly recognized as primary producers of marine secondary metabolites, drawing growing research interest. Many of these organisms are unculturable, posing challenges for study. Metagenomic techniques enable research on these unculturable microorganisms, identifying various biosynthetic gene clusters (BGCs) related to marine microbial secondary metabolites, thereby unveiling their secrets. This review comprehensively analyses metagenomic methods used in discovering marine microbial secondary metabolites, highlighting tools commonly employed in BGC identification, and discussing the potential and challenges in this field. It emphasizes the key role of metagenomics in unveiling secondary metabolites, particularly in marine sponges and tunicates. The review also explores current limitations in studying these metabolites through metagenomics, noting how long-read sequencing technologies and the evolution of computational biology tools offer more possibilities for BGC discovery. Furthermore, the development of synthetic biology allows experimental validation of computationally identified BGCs, showcasing the vast potential of metagenomics in mining marine microbial secondary metabolites.


Asunto(s)
Organismos Acuáticos , Metagenómica , Metabolismo Secundario , Metagenómica/métodos , Metabolismo Secundario/genética , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Animales , Familia de Multigenes , Poríferos/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Productos Biológicos/metabolismo , Biología Computacional/métodos , Vías Biosintéticas/genética , Urocordados/microbiología
16.
World J Gastrointest Oncol ; 16(7): 3211-3229, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072182

RESUMEN

BACKGROUND: Gastric intestinal metaplasia (IM) is a precancerous lesion that is associated with an elevated risk of gastric carcinogenesis. Weiwei Decoction (WWD) is a promising traditional Chinese herbal formula widely employed in clinical for treating IM. Previous studies suggested the potential involvement of the olfactomedin 4 (OLFM4)/nucleotide-binding oligomerization domain 1 (NOD1)/caudal-type homeobox gene 2 (CDX2) signaling pathway in IM regulation. AIM: To verify the regulation of the OLFM4/NOD1/CDX2 pathway in IM, specifically investigating WWD's effectiveness on IM through this pathway. METHODS: Immunohistochemistry for OLFM4, NOD1, and CDX2 was conducted on tissue microarray. GES-1 cells treated with chenodeoxycholic acid were utilized as IM cell models. OLFM4 short hairpin RNA (shRNA), NOD1 shRNA, and OLFM4 pcDNA were transfected to clarify the pathway regulatory relationships. Protein interactions were validated by co-immunoprecipitation. To explore WWD's pharmacological actions, IM rat models were induced using N-methyl-N'-nitro-N-nitrosoguanidine followed by WWD gavage. Gastric cells were treated with WWD-medicated serum. Cytokines and chemokines content were assessed by enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction. RESULTS: The OLFM4/NOD1/CDX2 axis was a characteristic of IM. OLFM4 exhibited direct binding and subsequent down-regulation of NOD1, thereby sustaining the activation of CDX2 and promoting the progression of IM. WWD improved gastric mucosal histological lesions while suppressing intestinal markers KLF transcription factor 4, villin 1, and MUCIN 2 expression in IM rats. Regarding pharmacological actions, WWD suppressed OLFM4 and restored NOD1 expression, consequently reducing CDX2 at the mRNA and protein levels in IM rats. Parallel regulatory mechanisms were observed at the protein level in IM cells treated with WWD-medicated serum. Furthermore, WWD-medicated serum treatment strengthened OLFM4 and NOD1 interaction. In case of anti-inflammatory, WWD restrained interleukin (IL)-6, interferon-gamma, IL-17, macrophage chemoattractant protein-1, macrophage inflammatory protein 1 alpha content in IM rat serum. WWD-medicated serum inhibited tumor necrosis factor alpha, IL-6, IL-8 transcriptions in IM cells. CONCLUSION: The OLFM4/NOD1/CDX2 pathway is involved in the regulation of IM. WWD exerts its therapeutic efficacy on IM through the pathway, additionally attenuating the inflammatory response.

17.
JHEP Rep ; 6(7): 101087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38882672

RESUMEN

Background & Aims: Recent studies demonstrated the importance of fibrosis in promoting an immunosuppressive liver microenvironment and thereby aggressive hepatocellular carcinoma (HCC) growth and resistance to immune checkpoint blockade (ICB), particularly via monocyte-to-monocytic myeloid-derived suppressor cell (M-MDSC) differentiation triggered by hepatic stellate cells (HSCs). We thus aimed to identify druggable targets in these immunosuppressive myeloid cells for HCC therapy. Methods: M-MDSC signature genes were identified by integrated transcriptomic analysis of a human HSC-monocyte culture system and tumor-surrounding fibrotic livers of patients with HCC. Mechanistic and functional studies were conducted using in vitro-generated and patient-derived M-MDSCs. The therapeutic efficacy of a M-MDSC targeting approach was determined in fibrosis-associated HCC mouse models. Results: We uncovered over-expression of protein phosphatase 1 regulatory subunit 15A (PPP1R15A), a myeloid cell-enriched endoplasmic reticulum stress modulator, in human M-MDSCs that correlated with poor prognosis and ICB non-responsiveness in patients with HCC. Blocking TGF-ß signaling reduced PPP1R15A expression in HSC-induced M-MDSCs, whereas treatment of monocytes by TGF-ß upregulated PPP1R15A, which in turn promoted ARG1 and S100A8/9 expression in M-MDSCs and reduced T-cell proliferation. Consistently, lentiviral-mediated knockdown of Ppp1r15a in vivo significantly reduced ARG1+S100A8/9+ M-MDSCs in fibrotic liver, leading to elevated intratumoral IFN-γ+GZMB+CD8+ T cells and enhanced anti-tumor efficacy of ICB. Notably, pharmacological inhibition of PPP1R15A by Sephin1 reduced the immunosuppressive potential but increased the maturation status of fibrotic HCC patient-derived M-MDSCs. Conclusions: PPP1R15A+ M-MDSC cells are involved in immunosuppression in HCC development and represent a novel potential target for therapies. Impact and implications: Our cross-species analysis has identified PPP1R15A as a therapeutic target governing the anti-T-cell activities of fibrosis-associated M-MDSCs (monocytic myeloid-derived suppressor cells). The results from the preclinical models show that specific inhibition of PPP1R15A can break the immunosuppressive barrier to restrict hepatocellular carcinoma growth and enhance the efficacy of immune checkpoint blockade. PPP1R15A may also function as a prognostic and/or predictive biomarker in patients with hepatocellular carcinoma.

18.
Kidney Int ; 84(6): 1129-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23868013

RESUMEN

The TGF-ß/Smad3 pathway plays a major role in tissue fibrosis, but the precise mechanisms are not fully understood. Here we identified microRNA miR-433 as an important component of TGF-ß/Smad3-driven renal fibrosis. The miR-433 was upregulated following unilateral ureteral obstruction, a model of aggressive renal fibrosis. In vitro, overexpression of miR-433 enhanced TGF-ß1-induced fibrosis, whereas knockdown of miR-433 suppressed this response. Furthermore, Smad3, but not Smad2, bound to the miR-433 promoter to induce its expression. Delivery of an miR-433 knockdown plasmid to the kidney by ultrasound microbubble-mediated gene transfer suppressed the induction and progression of fibrosis in the obstruction model. The antizyme inhibitor Azin1, an important regulator of polyamine synthesis, was identified as a target of miR-433. Overexpression of miR-433 suppressed Azin1 expression, while, in turn, Azin1 overexpression suppressed TGF-ß signaling and the fibrotic response. Thus, miR-433 is an important component of TGF-ß/Smad3-induced renal fibrosis through the induction of a positive feedback loop to amplify TGF-ß/Smad3 signaling, and may be a potential therapeutic target in tissue fibrosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , MicroARNs/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/metabolismo , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Sitios de Unión , Proteínas Portadoras/genética , Línea Celular , Modelos Animales de Enfermedad , Doxorrubicina , Fibrosis , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Ratas , Transducción de Señal , Proteína Smad2/deficiencia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/deficiencia , Proteína smad3/genética , Proteína smad7/genética , Proteína smad7/metabolismo , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba , Obstrucción Ureteral/complicaciones
19.
Front Microbiol ; 14: 1215609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476664

RESUMEN

Introduction: In metabolic engineering and synthetic biology applications, promoters with appropriate strengths are critical. However, it is time-consuming and laborious to annotate promoter strength by experiments. Nowadays, constructing mutation-based synthetic promoter libraries that span multiple orders of magnitude of promoter strength is receiving increasing attention. A number of machine learning (ML) methods are applied to synthetic promoter strength prediction, but existing models are limited by the excessive proximity between synthetic promoters. Methods: In order to enhance ML models to better predict the synthetic promoter strength, we propose EVMP(Extended Vision Mutant Priority), a universal framework which utilize mutation information more effectively. In EVMP, synthetic promoters are equivalently transformed into base promoter and corresponding k-mer mutations, which are input into BaseEncoder and VarEncoder, respectively. EVMP also provides optional data augmentation, which generates multiple copies of the data by selecting different base promoters for the same synthetic promoter. Results: In Trc synthetic promoter library, EVMP was applied to multiple ML models and the model effect was enhanced to varying extents, up to 61.30% (MAE), while the SOTA(state-of-the-art) record was improved by 15.25% (MAE) and 4.03% (R2). Data augmentation based on multiple base promoters further improved the model performance by 17.95% (MAE) and 7.25% (R2) compared with non-EVMP SOTA record. Discussion: In further study, extended vision (or k-mer) is shown to be essential for EVMP. We also found that EVMP can alleviate the over-smoothing phenomenon, which may contributes to its effectiveness. Our work suggests that EVMP can highlight the mutation information of synthetic promoters and significantly improve the prediction accuracy of strength. The source code is publicly available on GitHub: https://github.com/Tiny-Snow/EVMP.

20.
Prog Biophys Mol Biol ; 177: 229-234, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574883

RESUMEN

As a noninvasive method, circulating tumor cell (CTC) provides ideal liquid biopsy specimens for early cancer screening and diagnosis. CTCs detection in breast cancer is correlated with patient prognosis such as disease-free survival (DFS) and overall survival (OS). Besides, accumulating evidence supported that CTCs count may be indicator for chemotherapy response as well. The functional roles of microRNA (miRNA) in breast cancer have been well-recognized for the last few years. Due to its stability in circulation, numerous studies have proven that circulating miRNA may serve as promising diagnostic and prognostic biomarkers in breast cancer. The potential ability of miRNAs in disease screening, staging or even molecular subtype classification makes them valuable tools for early breast cancer patients. It would be of great significance to characterize the miRNA expression profile in CTCs, which could provide reliable biological information originated from tumor. However, some issues need to be addressed before the utility of CTC-specific miRNAs in clinical setting. Taken together, we believe that CTC-specific miRNA detection will be trend for early breast cancer screening, diagnosis and treatment monitor in near future.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Células Neoplásicas Circulantes , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Células Neoplásicas Circulantes/patología , MicroARNs/genética , Relevancia Clínica , Supervivencia sin Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA