Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 89(5): 3279-3291, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377542

RESUMEN

The construction of 3,4-dihydroquinolone derivatives has attracted a considerable amount of attention due to their extensive applications in medicinal chemistry. In this study, we present the Pd-catalyzed [4+2] cycloaddition of vinyl benzoxazinanones with α-alkylidene succinimides for the efficient synthesis of 3,4-dihydroquinolones. This approach presents numerous advantages, including the ready availability of starting materials, mild reaction conditions without the use of additional bases, and a wide range of substrates. In particular, all of the desired products can be easily afforded in high yields (≤99%) and excellent diastereoselectivities (>20:1). The practicality and reliability of this strategy were demonstrated by the successful scale-up synthesis and subsequent straightforward synthetic transformations.

2.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

3.
Exp Lung Res ; 49(1): 205-219, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38044666

RESUMEN

Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1ß, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-ß1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-ß1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1ß, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-ß1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-ß1/Smad2/3 pathway, thereby improving BLM-induced PF.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , FN-kappa B , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/efectos adversos , Vimentina , Factor 2 Relacionado con NF-E2 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Cadherinas , Superóxido Dismutasa
4.
Platelets ; 34(1): 2166677, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36719251

RESUMEN

In our previous study, target drug delivery and treatment of malignant tumors have been achieved by using platelets as carriers loading nano-chemotherapeutic agents (ND-DOX). However, drug release from ND-DOX-loaded platelets is dependent on negative platelet activation by tumor cells, whose activation is not significant enough for the resulting drug release to take an effective anti-tumor effect. Exploring strategies to proactively manipulate the controlled release of drug-laden platelets is imperative. The present study innovatively revealed that photodynamic action can activate platelets in a spatiotemporally controlled manner. Consequently, based on the previous study, platelets were used to load iron oxide-polyglycerol-doxorubicin-chlorin e6 composites (IO-PG-DOX-Ce6), wherein the laser-triggered drug release ability and anti-tumor capability were demonstrated. The findings suggested that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability. Importantly and interestingly, drug-loaded platelets were significantly activated by laser irradiation, characterized by intracellular ROS accumulation and up-regulation of CD62p. Additionally, scanning electron microscopy (SEM) and hydrated particle size results also showed a significant aggregation response of laser irradiated-drug-loaded platelets. Further transmission electron microscopy (TEM) measurements indicated that the activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells. Finally, the co-culture model of drug-loaded platelets and tumor cells proved that laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells. Overall, the present study discovers a drug-loaded platelets delivery using photodynamic effect, enabling laser-controlled intelligent drug delivery and anti-tumor therapy, which provides a novel and feasible approach for clinical application of cytopharmaceuticals.


What is the context?1. Platelets were applied to load IO-PG-DOX-Ce6, wherein the laser-triggered drug release and anti-tumor effect were investigated in vitro.2. The findings indicated that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability, which may attribute to the activation of autophagy in platelets.3. IO-PG-DOX-Ce6-loaded platelets could be significantly activated by laser irradiation (690 nm).4. Activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells5. The co-culture model of drug-loaded platelets and tumor cells proved that the laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells.What is new?1. Platelets could be utilized as the vehicle to load photosensitizer-loaded-nano-drug.2. Photodynamic action can activate platelets in a spatiotemporally controlled manner, which could be a tool to regulate the activation of platelets.3. The laser-triggered activation of drug-loaded platelets allows for target release of cargo.4. The limitation of the current research is that only in vitro experiments were carried out to demonstrate our conclusions.What is impact?The present work provides a novel and feasible approach for the clinical application of cytopharmaceuticals.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Rayos Láser
5.
BMC Geriatr ; 23(1): 84, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755225

RESUMEN

OBJECTIVE: This study aimed to explore the relationship between the sarcopenia index (SI) and the risk of pneumonia in hospitalized patients with acute alcohol withdrawal syndrome (AWS). STUDY DESIGN: We have performed a retrospective study of individuals with AWS from a teaching hospital in western China. Patients' data were retrieved from the medicinal record databases. Patients' primary (upon admission) blood serum creatinine (Cr) and cystatin C (CysC) levels were incorporated into the records. Participants were separated into low and high SI cohorts based on the three-quarter digit of SI (SI = serum Cr/serum CysC ratio × 100). The association between SI and the risk of pneumonia in hospitalized patients with AWS was assessed by logistic regression analysis. RESULT: Three hundred and twelve patients with acute AWS were included in this retrospective analysis. Among hospitalized patients with acute AWS, the incidence of pneumonia was 13.78%. The average median age of acute AWS patients with pneumonia was 55.28 (10.65) years, and the mean age of acute AWS individuals without pneumonia was 51.23 (10.08) years. In the univariate analysis, the high SI group (SI > 87.91) had a lower incidence of pneumonia than the low SI group (SI ≤ 87.91) (high SI vs. low SI, 6.41% vs. 16.24%, p = 0.029). Further logistic regression analysis showed that the high SI group demonstrated a poorer risk of pneumonia (OR = 0.353, 95%CI: 0.134-0.932, p = 0.036). After adjusting for possible confounders, the risk of pneumonia remained low in the high SI group (OR = 0.358, 95%CI: 0.132-0.968, p = 0.043). CONCLUSION: Our results showed that SI was linked with the risk of pneumonia in hospitalized individuals with acute AWS. We further suggest that it could be a pneumonia risk factor, especially in medical centers where sarcopenia diagnosis is unavailable.


Asunto(s)
Alcoholismo , Neumonía , Sarcopenia , Síndrome de Abstinencia a Sustancias , Humanos , Alcoholismo/complicaciones , Alcoholismo/diagnóstico , Alcoholismo/epidemiología , Pronóstico , Estudios Retrospectivos , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Neumonía/complicaciones , Neumonía/diagnóstico
6.
Mikrochim Acta ; 190(10): 413, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740757

RESUMEN

A stable and innovative composite film-modified electrode based on Dawson polyoxometalates H8P2Mo16V2O62 (P2Mo16V2) and ionic liquid (BMIMBr)-decorated carbon nanotubes, annotated as PEI/(P2Mo16V2/BMIMBr-CNTs)8, has been constructed by using the layer-by-layer self-assembly (LBL) method for the determination of L-tyrosine. The combination of three active components not only offers higher conductivity to facilitate rapid electron transfer, but also avoids the accumulation of P2Mo16V2 to expand the contact area and increase the reactive active sites. The modified electrode exhibits outstanding sensing performance for determination of Tyr with wide linear determination range of 5.8×10-7 M ~ 1.2×10-4 M, low determination limit of 1.7×10-7M (S/N=3), high selectivity for common interferences, and excellent stability at the potential of +0.78 V (vs. Ag/AgCl (3 M KCl)). The relative standard deviation (RSD) of 4.3% for five groups of parallel experiments shows the satisfactory repeatability of PEI/(P2Mo16V2/BMIMBr-CNTs)8. In addition, for determination of Tyr, the PEI/(P2Mo16V2/BMIMBr-CNTs)8 shows good recoveries of 98.8-99.8% in meat floss, which can be feasible in practical application.


Asunto(s)
Líquidos Iónicos , Nanotubos de Carbono , Tirosina , Electrodos
7.
Croat Med J ; 64(4): 243-255, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654036

RESUMEN

AIM: To evaluate the effect of lycopene on carbon tetrachloride (CCl4)-induced hepatic fibrosis and elucidate the underlying mechanism. METHODS: Male rats were randomly assigned to the control group, CCl4 group, and lycopene group. The CCl4 group was intraperitoneally injected with CCl4 twice per week for 12 weeks to induce hepatic fibrosis. The control group was intraperitoneally injected with olive oil. Lycopene was orally administered during CCl4 treatment. Body weight and liver weight were recorded. Liver function was assessed. Biomarkers of oxidative stress and inflammatory factors were measured. Histological changes and collagen expression were evaluated. The expression of TGF-ß1, α-SMA, HO-1, SIRT 1, REDD1, SHP2, P62, and LC3 in the liver was determined, as well as the levels of phosphorylated NF-κB and IκB α. RESULTS: Lycopene significantly reduced the liver/body weight ratio, and AST (P=0.001) and ALT levels (P=0.009). It also significantly increased CAT and SOD activities (P<0.001) and decreased MDA content (P<0.001), IL-6 (P<0.001), and TNF-α (P=0.001). Histological analysis demonstrated that lycopene improved lobular architecture and decreased collagen expression. It also decreased the expression of TGF-ß1, α-SMA, P62, and SHP2, and increased the ratio of LC3 II/I, as well as Beclin 1 and REDD1 expression. In addition, it reduced NF-κB and IκB-α phosphorylation, and elevated the levels of HO-1, SIRT 1, and PGC 1α. CONCLUSION: Lycopene attenuates CCl4-induced hepatic fibrosis because of its effect on autophagy by reducing oxidative stress and inflammation.


Asunto(s)
Tetracloruro de Carbono , Factor de Crecimiento Transformador beta1 , Masculino , Animales , Ratas , Tetracloruro de Carbono/toxicidad , Licopeno/farmacología , Licopeno/uso terapéutico , FN-kappa B , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Autofagia , Peso Corporal
8.
J Org Chem ; 87(8): 5358-5370, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35324180

RESUMEN

Although numerous chiral pyrazolones with a six-membered spirocyclic center at the C4 position have been developed, the asymmetric construction of six-membered oxa-spiropyrazolones is still a challenging task in organic synthesis. Herein, we describe the [4 + 2] annulation of cyclobutanones and pyrazoline-4,5-diones for the efficient synthesis of δ-lactone-fused spiropyrazolone derivatives with generally high yields and good enantioselectivities under mild conditions. The successful scale-up synthesis and further transformation of the final product highlight the practicality and reliability of this reaction.


Asunto(s)
Lactonas , Pirazolonas , Catálisis , Estructura Molecular , Reproducibilidad de los Resultados , Estereoisomerismo
9.
Acta Pharmacol Sin ; 43(8): 1955-1969, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34983931

RESUMEN

Paternal stress exposure-induced high corticosterone (CORT) levels may contribute to depression in offspring. Clinical studies disclose the association of depressive symptoms in fathers with their adolescent offspring. However, there is limited information regarding the intervention for intergenerational inheritance of depression. In this study we evaluated the intervention of cinnamaldehyde, a major constituent of Chinese herb cinnamon bark, for intergenerational inheritance of depression in CORT- and CMS-induced mouse models of depression. Depressive-like behaviors were induced in male mice by injection of CORT (20 mg·kg-1·d-1, sc) for 6 weeks or by chronic mild stress (CMS) for 6 weeks. We showed that co-administration of cinnamaldehyde (10, 20, or 40 mg·kg-1·d-1, ig) for 6 weeks in F0 males prevented the depressive-like phenotypes of F1 male offspring. In addition, co-administration of cinnamaldehyde (20 mg·kg-1·d-1, ig) for 4 weeks significantly ameliorated depressive-like behaviors of chronic variable stress (CVS)-stimulated F1 offspring born to CMS mice. Notably, cinnamaldehyde had no reproductive toxicity, while positive drug fluoxetine showed remarkable reproductive toxicity. We revealed that CMS and CORT significantly reduced testis glucocorticoid receptor (GR) expression, and increased testis and sperm miR-190b expression in F0 depressive-like models. Moreover, pre-miR-190b expression was upregulated in testis of F0 males. The amount of GR on miR-190b promoter regions was decreased in testis of CORT-stimulated F0 males. Cinnamaldehyde administration reversed CORT-induced GR reduction in testis, miR-190b upregulation in testis and sperm, pre-miR-190b upregulation in testis, and the amount of GR on miR-190b promoter regions of F0 males. In miR-190b-transfected Neuro 2a (N2a) cells, we demonstrated that miR-190b might directly bind to the 3'-UTR of brain-derived neurotrophic factor (BDNF). In the hippocampus of F1 males of CORT- or CMS-induced depressive-like models, increased miR-190b expression was accompanied by reduced BDNF and GR, which were ameliorated by cinnamaldehyde. In conclusion, cinnamaldehyde is a potential intervening agent for intergenerational inheritance of depression, probably by regulating GR/miR-190b/BDNF pathway.


Asunto(s)
Acroleína , Factor Neurotrófico Derivado del Encéfalo , Depresión , MicroARNs , Receptores de Glucocorticoides , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/metabolismo , Depresión/tratamiento farmacológico , Depresión/genética , Padre/psicología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , MicroARNs/metabolismo , Herencia Paterna , Receptores de Glucocorticoides/metabolismo , Semen/metabolismo
10.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568865

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Asunto(s)
Ferroptosis , Neoplasias , Artemisininas , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Hierro , Nanomedicina , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
11.
FASEB J ; 34(11): 15327-15337, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32951236

RESUMEN

Palatal expansion has been widely used for the treatment of transverse discrepancy or maxillae hypoplasia, but the biological mechanism of bone formation during this procedure is largely unknown. Osteoclasts, which could be regulated by T cells and other components of the immune system, play a crucial role in force-induced bone remodeling. However, whether T cells participate in the palatal expansion process remains to be determined. In this study, we conducted the tooth borne rapid palatal expansion model on the mouse, and detect whether the helper T cells (Th) and regulatory T cells (Treg) could affect osteoclasts and further bone formation. After bonding open spring palatal expanders for 3-day, 5-day, 7-day, and retention for 28-day, micro-computed tomography scanning, histologic, and immunofluorescence staining were conducted to evaluate how osteoclasts were regulated by T cells during the bone remodeling process. We revealed that the increased osteoclast number was downregulated at the end of the early stage of rapid palatal expansion. Type 1 helper T (Th1) cells and Type 17 helper T (Th17) cells increased initially and promoted osteoclastogenesis. Thereafter, the regulatory T (Treg) cells emerged and maintained a relatively high level at the late stage of the experiment to downregulate the osteoclast number by inhibiting Th1 and Th17 cells, which governed the new bone formation. In conclusion, orchestrated T cells are able to regulate osteoclasts at the early stage of rapid palatal expansion and further facilitate bone formation during retention. This study identifies that T cells participate in the palatal expansion procedure by regulating osteoclasts and implies the potential possibility for clinically modulating T cells to improve the palatal expansion efficacy.


Asunto(s)
Remodelación Ósea , Osteoclastos/citología , Osteogénesis , Hueso Paladar/citología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/inmunología , Técnica de Expansión Palatina , Hueso Paladar/inmunología
12.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34388342

RESUMEN

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Clorofilidas/administración & dosificación , Melanoma/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/farmacocinética , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Melanoma/patología , Ratones , Fotoquimioterapia , Neoplasias Cutáneas/patología , Solubilidad , Distribución Tisular
13.
Br J Cancer ; 123(7): 1164-1177, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32636467

RESUMEN

BACKGROUND: Deubiquitinating enzymes (DUBs) are linked to cancer progression and dissemination, yet less is known about their regulation and impact on epithelial-mesenchymal transition (EMT). METHODS: An integrative translational approach combining systematic computational analyses of The Cancer Genome Atlas cancer cohorts with CRISPR genetics, biochemistry and immunohistochemistry methodologies to identify and assess the role of human DUBs in EMT. RESULTS: We identify a previously undiscovered biological function of STAM-binding protein like 1 (STAMBPL1) deubiquitinase in the EMT process in lung and breast carcinomas. We show that STAMBPL1 expression can be regulated by mutant p53 and that its catalytic activity is required to affect the transcription factor SNAI1. Accordingly, genetic depletion and CRISPR-mediated gene knockout of STAMBPL1 leads to marked recovery of epithelial markers, SNAI1 destabilisation and impaired migratory capacity of cancer cells. Reversely, STAMBPL1 expression reprogrammes cells towards a mesenchymal phenotype. A significant STAMBPL1-SNAI1 co-signature was observed across multiple tumour types. Importantly, STAMBPL1 is highly expressed in metastatic tissues compared to matched primary tumour of the same lung cancer patient and its expression predicts poor prognosis. CONCLUSIONS: Our study provides a novel concept of oncogenic regulation of a DUB and presents a new role and predictive value of STAMBPL1 in the EMT process across multiple carcinomas.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/patología , Péptido Hidrolasas/fisiología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/fisiología , Femenino , Humanos , Péptido Hidrolasas/análisis , Factores de Transcripción de la Familia Snail/análisis , Factores de Transcripción de la Familia Snail/fisiología , Proteína p53 Supresora de Tumor/genética
14.
J Asian Nat Prod Res ; 22(4): 359-369, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30829054

RESUMEN

Eighteen uronic acid derivatives were designed and synthesized, and the cytotoxicities in vitro of two cancer cell lines (BEL7402 and SGC7901) were evaluated by MTT assay. The results showed that the inhibitory rate of the compounds on both cell lines was significantly higher than the parent compound. The IC50 of compounds II4, II6, III4, and III6 are comparable or stronger than the positive control drug, the interactions between compounds II4, II6, III4, III6, and NF-κB were also studied by docking simulations.


Asunto(s)
Antineoplásicos , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Estructura-Actividad , Triterpenos , Ácido Ursólico
15.
J Pediatr Hematol Oncol ; 41(5): 399-401, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29746440

RESUMEN

Li-Fraumeni syndrome is a kind of hereditary cancer predisposition syndromes, and is caused by TP53 gene mutation. Adrenocortical carcinoma (ACC) is commonly described as the most closely related tumor with this disease. Here, we present a case of a male infant with composite ACC and neuroblastoma who inherited a TP53 gene mutation from his mother, a 20-year-old carrier without any tumor to date. This TP53 gene mutation may be pathogenic and lead to composite malignancies of ACC and neuroblastoma.


Asunto(s)
Carcinoma Corticosuprarrenal/genética , Mutación de Línea Germinal , Neuroblastoma/genética , Proteína p53 Supresora de Tumor/genética , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Lactante , Síndrome de Li-Fraumeni , Masculino , Madres , Adulto Joven
16.
J Asian Nat Prod Res ; 20(9): 897-908, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29304559

RESUMEN

A series of asiatic acid derivatives were synthesized and their cytotoxicities in vitro against two cancer cell lines (HepG2 and SGC7901) were evaluated by MTT assay. The results showed that compounds I2, I6, and II6 have more potent anticancer activity than that of the positive control drug paclitaxel. The interactions between the compounds I2, I6, and II6 and survivin were also studied by docking simulations.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Triterpenos Pentacíclicos/química , Survivin/antagonistas & inhibidores , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Paclitaxel/farmacología
17.
Med Sci Monit ; 23: 1999-2006, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28442702

RESUMEN

BACKGROUND Gene polymorphisms are associated with sensitivity to platinum drugs. This study aimed to investigate the polymorphisms of GSTP1 rs1695 locus and ABCC2 rs717620 locus, and the sensitivity of patients with advanced non-small cell lung cancer (NSCLC) to platinum drugs in a Xinjiang Uygur population. MATERIAL AND METHODS The gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 of Uygur NSCLC patients were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The relationship between the prognosis of advanced NSCLC Uygur patients and the gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 was analyzed using progression-free survival (PFS) and overall survival (OS) as the major outcome indicators. RESULTS The median PFS of patients with advanced NSCLC was 6.9 months and the OS of Uygur patients with advanced NSCLC was 10.8 months. Kaplan-Meier survival analysis indicated that survival time of patients with GSTP1 AG + GG was significantly longer than in patients with AA gene (P<0.05), and survival time of patients with ABCC2 CT + TT was significantly longer than in patients with the CC gene (P<0.05). CONCLUSIONS Polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 can be used to predict the outcomes of Uygur patients with advanced NSCLC who have received platinum-based chemotherapy. Additionally, this information could be used to guide the individualized treatment of Uygur patients with advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Gutatión-S-Transferasa pi/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Anciano , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/administración & dosificación , Carboplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/terapia , China , Cisplatino/administración & dosificación , Cisplatino/farmacología , Supervivencia sin Enfermedad , Etnicidad/genética , Femenino , Gutatión-S-Transferasa pi/metabolismo , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Platino (Metal)/metabolismo , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Resultado del Tratamiento
18.
J Bacteriol ; 198(2): 311-20, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26527640

RESUMEN

UNLABELLED: Deacetylation of 7-aminocephalosporanic acid (7-ACA) at position C-3 provides valuable starting material for producing semisynthetic ß-lactam antibiotics. However, few enzymes have been characterized in this process before now. Comparative analysis of the genome of the thermophilic bacterium Alicyclobacillus tengchongensis revealed a hypothetical protein (EstD1) with typical esterase features. The EstD1 protein was functionally cloned, expressed, and purified from Escherichia coli BL21(DE3). It indeed displayed esterase activity, with optimal activity at around 65°C and pH 8.5, with a preference for esters with short-chain acyl esters (C2 to C4). Sequence alignment revealed that EstD1 is an SGNH hydrolase with the putative catalytic triad Ser15, Asp191, and His194, which belongs to carbohydrate esterase family 12. EstD1 can hydrolyze acetate at the C-3 position of 7-aminocephalosporanic acid (7-ACA) to form deacetyl-7-ACA, which is an important starting material for producing semisynthetic ß-lactam antibiotics. EstD1 retained more than 50% of its initial activity when incubated at pH values ranging from 4 to 11 at 65°C for 1 h. To the best of our knowledge, this enzyme is a new SGNH hydrolase identified from thermophiles that is able to hydrolyze 7-ACA. IMPORTANCE: Deacetyl cephalosporins are highly valuable building blocks for the industrial production of various kinds of semisynthetic ß-lactam antibiotics. These compounds are derived mainly from 7-ACA, which is obtained by chemical or enzymatic processes from cephalosporin C. Enzymatic transformation of 7-ACA is the main method because of the adverse effects chemical deacylation brought to the environment. SGNH hydrolases are widely distributed in plants. However, the tools for identifying and characterizing SGNH hydrolases from bacteria, especially from thermophiles, are rather limited. Here, our work demonstrates that EstD1 belongs to the SGNH family and can hydrolyze acetate at the C-3 position of 7-ACA. Moreover, this study can enrich our understanding of the functions of these enzymes from this family.


Asunto(s)
Alicyclobacillus/enzimología , Cefalosporinas/metabolismo , Esterasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Alicyclobacillus/genética , Alicyclobacillus/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Esterasas/genética , Datos de Secuencia Molecular , Filogenia
19.
Tumour Biol ; 37(2): 2023-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26337275

RESUMEN

To investigate the expression level of NEK2 in 40 tissue specimens of primary liver cancer and to search for clues whether the effect of NEK2 depletion plays a role on biological behaviors of HepG2 cells and the relevant molecular mechanism are the objectives of this study. Real-time PCR and immunohistochemistry assessed expression level of NEK2 in specimens of cancerous tissues and carcinoma-adjacent tissues. The NEK2 expression level in HepG2, Huh7, SMMC, and 7402 cells was detected by real-time PCR and western blot to screen experimental cell line. To assess the expression levels of NEK2 mRNA and protein, an effective siRNA transfected into the HepG2 cells was designed. CCK8 and colony-forming assays were performed to verify short-term and long-term proliferative activities, respectively. Capacity of apoptosis and cell cycle changes were assessed by flow cytometry. Ability of transference and invasion was measured by Transwell Chambers. Western blot approach was used to determine the protein expression levels. There was significantly high expression level of NEK2 in cancerous tissues compared to adjacent tissues. The expression of NEK2 was higher in HepG2 cells than other cell lines. Real-time PCR and western blot shown there were obviously down-regulated NEK2 expression in the NEK2-siRNA group compared to control groups. The capacity of amplification and invasion was inhibited distinctly, and FCM revealed the apoptosis rate was increased and G1 phase was arrested in NEK2-siRNA group. Western blot indicated that low expression of NEK2 in HepG2 cells could increase the expression levels of Bax, caspase-3, P21, and TIMP-1, but significantly suppressed the c-myc, c-jun, Bcl-2, cyclinD1, CDK4, MMP2, and MMP9 expression levels and the phosphorylation levels of ERK, JNK, and P38 compared with the control groups. Our findings demonstrated that NEK2 could be a valuable carcinogenic factor and a promising therapeutic target for primary liver cancer; NEK2 may regulate proliferation, apoptosis, and other biological behaviors of HepG2 cells via MAPK signal pathway.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas Relacionadas con NIMA/metabolismo , Adulto , Anciano , Apoptosis/fisiología , Western Blotting , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/fisiología , Femenino , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
20.
Zhongguo Zhong Yao Za Zhi ; 40(14): 2732-6, 2015 Jul.
Artículo en Zh | MEDLINE | ID: mdl-26666018

RESUMEN

The experiment is designed to explore pathological festures and material basis of pseadoanaphylactoid reaction induced by notoginseng total saponin preparation. Mouse pseadoanaphylactoid reaction was used, 50 ICR mice were randomly assigned to control group, positive medicine group, notoginseng total saponin preparation low-dose group, notoginseng total saponin preparation middle-dose group, notoginseng total saponin preparation high-dose group on average. They are treated by intravenous injection of test substance solutions containing 0.4% Evans blue (EB). 30 min later, scores of ear blue staining and quantitation of ear EB exudation were recorded. Another two experiment were repeated in the same way excluding EB, just to. detect the related cytokines in serum using ELISA. We found that the scores of pseudoanaphylactoid reaction in notoginseng total saponin preparation injection middle-dose group and high-dose group was evidently higher than that in control group, suggesting that notoginseng total saponin preparation injection may be can lead to pseadoanaphylactoid reaction. HE staining showed that pseadoanaphylactoid reaction induced by notoginseng total saponin preparation injection is related to inflammation. Histamine, VEGF and TNF-α levels in notoginseng total saponin preparation middle-dose group and high-dose group significantly increased (P < 0.05, P < 0.01) than control group and showed a dose-dependent manner as well as consistent with the degree of ear blue dye. While IL-6 and IL-10 content did not increase significantly in notoginseng total saponin preparation low-dose group and middle-dose group, but they significantly higher than control group (P < 0.05, P < 0.01) when it increased to quadrupe clinical concentrations, eight times of the clinical dose. So pseadoanaphylactoid reaction caused by notoginseng total saponin preparation may be related to histamine, VEGF, TNF-α, and it is possible that IL-6 and IL-10 can play a role when pseadoanaphylactoid reaction achieve a certain high degree.


Asunto(s)
Anafilaxia/inducido químicamente , Hipersensibilidad a las Drogas/etiología , Panax notoginseng/efectos adversos , Saponinas/efectos adversos , Animales , Permeabilidad Capilar/efectos de los fármacos , Citocinas/sangre , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos ICR , Panax notoginseng/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA