Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 621(7978): 389-395, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648852

RESUMEN

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes1,2. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance3-9. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction10, thereby playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina/fisiología , Monosacáridos/metabolismo , Insulina/metabolismo , Síndrome Metabólico/metabolismo , Heces/química , Heces/microbiología , Metabolómica
2.
Genes Cells ; 24(1): 82-93, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417516

RESUMEN

Cellular signaling regulates various cellular functions via protein phosphorylation. Phosphoproteomic data potentially include information for a global regulatory network from signaling to cellular functions, but a procedure to reconstruct this network using such data has yet to be established. In this paper, we provide a procedure to reconstruct a global regulatory network from signaling to cellular functions from phosphoproteomic data by integrating prior knowledge of cellular functions and inference of the kinase-substrate relationships (KSRs). We used phosphoproteomic data from insulin-stimulated Fao hepatoma cells and identified protein phosphorylation regulated by insulin specifically over-represented in cellular functions in the KEGG database. We inferred kinases for protein phosphorylation by KSRs, and connected the kinases in the insulin signaling layer to the phosphorylated proteins in the cellular functions, revealing that the insulin signal is selectively transmitted via the Pi3k-Akt and Erk signaling pathways to cellular adhesions and RNA maturation, respectively. Thus, we provide a method to reconstruct global regulatory network from signaling to cellular functions based on phosphoproteomic data.


Asunto(s)
Células/metabolismo , Redes Reguladoras de Genes , Fosfoproteínas/metabolismo , Proteómica/métodos , Transducción de Señal , Animales , Insulina/metabolismo , Masculino , Fosfopéptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ratas , Especificidad por Sustrato
3.
J Cell Sci ; 125(Pt 9): 2198-211, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22344266

RESUMEN

A latent process involving signal transduction and gene expression is needed as a preparation step for cellular function. We previously found that nerve growth factor (NGF)-induced cell differentiation has a latent process, which is dependent on ERK activity and gene expression and required for subsequent neurite extension. A latent process can be considered as a preparation step that decodes extracellular stimulus information into cellular functions; however, molecular mechanisms of this process remain unknown. We identified Metrnl, Dclk1 and Serpinb1a as genes that are induced during the latent process (LP) with distinct temporal expression profiles and are required for subsequent neurite extension in PC12 cells. The LP genes showed distinct dependency on the duration of ERK activity, and they were also induced during the latent process of PACAP- and forskolin-induced cell differentiation. Regardless of neurotrophic factors, expression levels of the LP genes during the latent process (0-12 hours), but not phosphorylation levels of ERK, always correlated with subsequent neurite extension length (12-24 hours). Overexpression of all LP genes together, but not of each gene separately, enhanced NGF-induced neurite extension. The LP gene products showed distinct spatial localization. Thus, the LP genes appear to be the common decoders for neurite extension length regardless of neurotrophic factors, and they might function in distinct temporal and spatial manners during the latent process. Our findings provide molecular insight into the physiological meaning of the latent process as the preparation step for decoding information for future phenotypic change.


Asunto(s)
Diferenciación Celular/genética , Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuritas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Serpinas/genética , Animales , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , Quinasas Similares a Doblecortina , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Células PC12 , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Serpinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo
4.
Mol Syst Biol ; 9: 664, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23670537

RESUMEN

Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin-signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLC(ex)). Based on the experimental results, we constructed a simple computational model that characterises response of insulin-signalling-dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLC(ex) was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Insulina/farmacología , Glucógeno Hepático/biosíntesis , Animales , Línea Celular Tumoral , Simulación por Computador , Retroalimentación Fisiológica , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Modelos Biológicos , Ratas , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
5.
NPJ Syst Biol Appl ; 10(1): 16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374087

RESUMEN

Biochemical network visualization is one of the essential technologies for mechanistic interpretation of omics data. In particular, recent advances in multi-omics measurement and analysis require the development of visualization methods that encompass multiple omics data. Visualization in 2.5 dimension (2.5D visualization), which is an isometric view of stacked X-Y planes, is a convenient way to interpret multi-omics/trans-omics data in the context of the conventional layouts of biochemical networks drawn on each of the stacked omics layers. However, 2.5D visualization of trans-omics networks is a state-of-the-art method that primarily relies on time-consuming human efforts involving manual drawing. Here, we present an R Bioconductor package 'transomics2cytoscape' for automated visualization of 2.5D trans-omics networks. We confirmed that transomics2cytoscape could be used for rapid visualization of trans-omics networks presented in published papers within a few minutes. Transomics2cytoscape allows for frequent update/redrawing of trans-omics networks in line with the progress in multi-omics/trans-omics data analysis, thereby enabling network-based interpretation of multi-omics data at each research step. The transomics2cytoscape source code is available at https://github.com/ecell/transomics2cytoscape .


Asunto(s)
Multiómica , Programas Informáticos
6.
iScience ; 27(3): 109121, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38524370

RESUMEN

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

7.
Neurosci Res ; 175: 82-97, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34979163

RESUMEN

There have been a number of reports about the transcriptional regulatory networks in schizophrenia. However, most of these studies were based on a specific transcription factor or a single dataset, an approach that is inadequate to understand the diverse etiology and underlying common characteristics of schizophrenia. Here we reconstructed and compared the transcriptional regulatory network for lipid metabolism enzymes using 15 public transcriptome datasets of neural cells from schizophrenia patients. Since many of the well-known schizophrenia-related SNPs are in enhancers, we reconstructed a network including enhancer-dependent regulation and found that 53.3 % of the total number of edges (7,577 pairs) involved regulation via enhancers. By examining multiple datasets, we found common and unique transcriptional modes of regulation. Furthermore, enrichment analysis of SNPs that were connected with genes in the transcriptional regulatory networks by eQTL suggested an association with hematological cell counts and some other traits/diseases, whose relationship to schizophrenia was either not or insufficiently reported in previous studies. Based on these results, we suggest that in future studies on schizophrenia, information on genotype, comorbidities and hematological cell counts should be included, along with the transcriptome, for a more detailed genetic stratification and mechanistic exploration of schizophrenia.


Asunto(s)
Esquizofrenia , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Metabolismo de los Lípidos/genética , Esquizofrenia/genética
8.
iScience ; 25(5): 104231, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494245

RESUMEN

Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth.

9.
Sci Rep ; 12(1): 13719, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962137

RESUMEN

Metabolic regulation in skeletal muscle is essential for blood glucose homeostasis. Obesity causes insulin resistance in skeletal muscle, leading to hyperglycemia and type 2 diabetes. In this study, we performed multiomic analysis of the skeletal muscle of wild-type (WT) and leptin-deficient obese (ob/ob) mice, and constructed regulatory transomic networks for metabolism after oral glucose administration. Our network revealed that metabolic regulation by glucose-responsive metabolites had a major effect on WT mice, especially carbohydrate metabolic pathways. By contrast, in ob/ob mice, much of the metabolic regulation by glucose-responsive metabolites was lost and metabolic regulation by glucose-responsive genes was largely increased, especially in carbohydrate and lipid metabolic pathways. We present some characteristic metabolic regulatory pathways found in central carbon, branched amino acids, and ketone body metabolism. Our transomic analysis will provide insights into how skeletal muscle responds to changes in blood glucose and how it fails to respond in obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo
10.
J Biol Chem ; 285(10): 7818-26, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20051520

RESUMEN

Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal/fisiología , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Animales , Técnicas Biosensibles , Simulación por Computador , Activación Enzimática , Factor de Crecimiento Epidérmico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , Quinasas raf/genética , Proteínas ras/genética
11.
Nat Commun ; 12(1): 3789, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145279

RESUMEN

Influenza viruses are a major public health problem. Vaccines are the best available countermeasure to induce effective immunity against infection with seasonal influenza viruses; however, the breadth of antibody responses in infection versus vaccination is quite different. Here, we show that nasal infection controls two sequential processes to induce neutralizing IgG antibodies recognizing the hemagglutinin (HA) of heterotypic strains. The first is viral replication in the lung, which facilitates exposure of shared epitopes that are otherwise hidden from the immune system. The second process is the germinal center (GC) response, in particular, IL-4 derived from follicular helper T cells has an essential role in the expansion of rare GC-B cells recognizing the shared epitopes. Therefore, the combination of exposure of the shared epitopes and efficient proliferation of GC-B cells is critical for generating broadly-protective antibodies. These observations provide insight into mechanisms promoting broad protection from virus infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Hemaglutininas Virales/inmunología , Interleucina-4/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , Epítopos/inmunología , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H2N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Células T Auxiliares Foliculares/inmunología , Vacunación
12.
iScience ; 24(3): 102217, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748705

RESUMEN

Systemic metabolic homeostasis is regulated by inter-organ metabolic cycles involving multiple organs. Obesity impairs inter-organ metabolic cycles, resulting in metabolic diseases. The systemic landscape of dysregulated inter-organ metabolic cycles in obesity has yet to be explored. Here, we measured the transcriptome, proteome, and metabolome in the liver and skeletal muscle and the metabolome in blood of fasted wild-type and leptin-deficient obese (ob/ob) mice, identifying components with differential abundance and differential regulation in ob/ob mice. By constructing and evaluating the trans-omic network controlling the differences in metabolic reactions between fasted wild-type and ob/ob mice, we provided potential mechanisms of the obesity-associated dysfunctions of metabolic cycles between liver and skeletal muscle involving glucose-alanine, glucose-lactate, and ketone bodies. Our study revealed obesity-associated systemic pathological mechanisms of dysfunction of inter-organ metabolic cycles.

13.
BMC Genomics ; 11 Suppl 4: S16, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21143799

RESUMEN

BACKGROUND: Appropriate regulation of respective gene expressions is a bottleneck for the realization of artificial biological systems inside living cells. The modification of several promoter sequences is required to achieve appropriate regulation of the systems. However, a time-consuming process is required for the insertion of an operator, a binding site of a protein for gene expression, to the gene regulatory region of a plasmid. Thus, a standardized method for integrating operator sequences to the regulatory region of a plasmid is required. RESULTS: We developed a standardized method for integrating operator sequences to the regulatory region of a plasmid and constructed a synthetic promoter that functions as a genetic AND gate. By standardizing the regulatory region of a plasmid and the operator parts, we established a platform for modular assembly of the operator parts. Moreover, by assembling two different operator parts on the regulatory region, we constructed a regulatory device with an AND gate function. CONCLUSIONS: We implemented a new standard to assemble operator parts for construction of functional genetic logic gates. The logic gates at the molecular scale have important implications for reprogramming cellular behavior.


Asunto(s)
Biología Computacional/métodos , Plásmidos/genética , Plásmidos/normas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencia de Bases , Sitios de Unión/genética , Escherichia coli/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Regiones Operadoras Genéticas/genética
14.
iScience ; 23(9): 101479, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32891058

RESUMEN

Insulin regulates glucose metabolism through thousands of regulatory mechanisms; however, which regulatory mechanisms are keys to control glucose metabolism remains unknown. Here, we performed kinetic trans-omic analysis by integrating isotope-tracing glucose flux and phosphoproteomic data from insulin-stimulated adipocytes and built a kinetic mathematical model to identify key allosteric regulatory and phosphorylation events for enzymes. We identified nine reactions regulated by allosteric effectors and one by enzyme phosphorylation and determined the regulatory mechanisms for three of these reactions. Insulin stimulated glycolysis by promoting Glut4 activity by enhancing phosphorylation of AS160 at S595, stimulated fatty acid synthesis by promoting Acly activity through allosteric activation by glucose 6-phosphate or fructose 6-phosphate, and stimulated glutamate synthesis by alleviating allosteric inhibition of Gls by glutamate. Most of glycolytic reactions were regulated by amounts of substrates and products. Thus, phosphorylation or allosteric modulator-based regulation of only a few key enzymes was sufficient to change insulin-induced metabolism.

15.
iScience ; 23(10): 101558, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083727

RESUMEN

Skeletal muscle adaptation is mediated by cooperative regulation of metabolism, signal transduction, and gene expression. However, the global regulatory mechanism remains unclear. To address this issue, we performed electrical pulse stimulation (EPS) in differentiated C2C12 myotubes at low and high frequency, carried out metabolome and transcriptome analyses, and investigated phosphorylation status of signaling molecules. EPS triggered extensive and specific changes in metabolites, signaling phosphorylation, and gene expression during and after EPS in a frequency-dependent manner. We constructed trans-omic network by integrating these data and found selective activation of the pentose phosphate pathway including metabolites, upstream signaling molecules, and gene expression of metabolic enzymes after high-frequency EPS. We experimentally validated that activation of these molecules after high-frequency EPS was dependent on reactive oxygen species (ROS). Thus, the trans-omic analysis revealed ROS-dependent activation in signal transduction, metabolome, and transcriptome after high-frequency EPS in C2C12 myotubes, shedding light on possible mechanisms of muscle adaptation.

17.
iScience ; 23(2): 100855, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32058966

RESUMEN

Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient 13C-tracer dynamic metabolic flux analysis (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is additionally regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation.

18.
Sci Signal ; 13(660)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262292

RESUMEN

Impaired glucose tolerance associated with obesity causes postprandial hyperglycemia and can lead to type 2 diabetes. To study the differences in liver metabolism in healthy and obese states, we constructed and analyzed transomics glucose-responsive metabolic networks with layers for metabolites, expression data for metabolic enzyme genes, transcription factors, and insulin signaling proteins from the livers of healthy and obese mice. We integrated multiomics time course data from wild-type and leptin-deficient obese (ob/ob) mice after orally administered glucose. In wild-type mice, metabolic reactions were rapidly regulated within 10 min of oral glucose administration by glucose-responsive metabolites, which functioned as allosteric regulators and substrates of metabolic enzymes, and by Akt-induced changes in the expression of glucose-responsive genes encoding metabolic enzymes. In ob/ob mice, the majority of rapid regulation by glucose-responsive metabolites was absent. Instead, glucose administration produced slow changes in the expression of carbohydrate, lipid, and amino acid metabolic enzyme-encoding genes to alter metabolic reactions on a time scale of hours. Few regulatory events occurred in both healthy and obese mice. Thus, our transomics network analysis revealed that regulation of glucose-responsive liver metabolism is mediated through different mechanisms in healthy and obese states. Rapid changes in allosteric regulators and substrates and in gene expression dominate the healthy state, whereas slow changes in gene expression dominate the obese state.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Transducción de Señal , Regulación Alostérica , Animales , Modelos Animales de Enfermedad , Hígado/patología , Masculino , Ratones , Ratones Obesos , Obesidad/patología
19.
iScience ; 7: 212-229, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30267682

RESUMEN

The concentrations of insulin selectively regulate multiple cellular functions. To understand how insulin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin signals, respectively. The induced insulin signal was selectively transmitted through the pathway involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selective trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular functions.

20.
Cell Syst ; 4(1): 19-20, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28125790

RESUMEN

Two recent studies in Cell and Science demonstrate the reconstruction of global mechanistic networks and identification of regulatory principles from multi-omics data.


Asunto(s)
Arginina , Neoplasias , Humanos , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA