Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 146(2): 1701-1709, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38157406

RESUMEN

Mesoporous materials with crystalline frameworks have been widely explored in many fields due to their unique structure and crystalline feature, but accurate manipulations over crystalline scaffolds, mainly composed of uncontrolled polymorphs, are still lacking. Herein, we explored a controlled crystallization-driven monomicelle assembly approach to construct a type of uniform mesoporous TiO2 particles with atomically aligned single-crystal frameworks. The resultant mesoporous TiO2 single-crystal particles possess an angular shape ∼80 nm in diameter, good mesoporosity (a high surface area of 112 m2 g-1 and a mean pore size at 8.3 nm), and highly oriented anatase frameworks. By adjusting the evaporation rate during assembly, such a facile solution-processed strategy further enables the regulation of the particle size and mesopore size without the destruction of the oriented crystallites. Such a combination of ordered mesoporosity and crystalline orientation provides both effective mass and charge transportation, leading to a significant increase in the hydrogen generation rate. A maximum hydrogen evolution rate of 12.5 mmol g-1 h-1 can be realized, along with great stability under solar light. Our study is envisaged to extend the possibility of mesoporous single crystal growth to a range of functional ceramics and semiconductors toward advanced applications.

2.
J Am Chem Soc ; 146(26): 17866-17877, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916547

RESUMEN

Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.

3.
J Am Chem Soc ; 146(9): 6199-6208, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394360

RESUMEN

A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.

4.
Small ; 20(15): e2307378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009801

RESUMEN

The high-current-density Zn-air battery shows big prospects in next-generation energy technologies, while sluggish O2 reaction and diffusion kinetics barricade the applications. Herein, the sequential assembly is innovatively demonstrated for hierarchically mesoporous molybdenum carbides/carbon microspheres with a tunable thickness of mesoporous carbon layers (Meso-Mo2C/C-x, where x represents the thickness). The optimum Meso-Mo2C/C-14 composites (≈2 µm in diameter) are composed of mesoporous nanosheets (≈38 nm in thickness), which possess bilateral mesoporous carbon layers (≈14 nm in thickness), inner Mo2C/C layers (≈8 nm in thickness) with orthorhombic Mo2C nanoparticles (≈2 nm in diameter), a high surface area of ≈426 m2 g-1, and open mesopores (≈6.9 nm in size). Experiments and calculations corroborate the hierarchically mesoporous Mo2C/C can enhance hydrophilicity for supplying sufficient O2, accelerate oxygen reduction kinetics by highly-active Mo2C and N-doped carbon sites, and facilitate O2 diffusion kinetics over hierarchically mesopores. Therefore, Meso-Mo2C/C-14 outputs a high half-wave potential (0.88 V vs RHE) with a low Tafel slope (51 mV dec-1) for oxygen reduction. More significantly, the Zn-air battery delivers an ultrahigh power density (272 mW cm-2), and an unprecedented 100 h stability at a high-current-density condition (100 mA cm-2), which is one of the best performances.

5.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

6.
J Am Chem Soc ; 145(50): 27708-27717, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054893

RESUMEN

Constructing asymmetric two-dimensional (2D) mesoporous nanomaterials with new pore structure, tunable monolayer architectures, and especially anisotropic surfaces remains a great challenge in materials science. Here, we report a dual-emulsion directed micelle assembly approach to fabricate a novel type of asymmetric monolayer mesoporous organosilica nanosheet for the first time. In this asymmetric 2D structure, numerous quasi-spherical semiopened mesopores (∼20 nm in diameter, 24 nm in opening size) were regularly arranged on a plane, endowing the porous nanosheets (several micrometers in size) with a typical surface anisotropy on two sides. Meanwhile, lots of triangular intervoids (4.0-5.0 nm in size) can also be found among each three semiopened mesopores, enabling the nanosheet to be interconnected. Vitally, such interconnected, anisotropic porous nanosheets exhibit ultrahigh accessible surface area (∼714 m2 g-1) and good lipophilicity properties owing to the abundant semiopened mesopores. Additionally, besides the nanosheet, the configuration of the asymmetric porous structure can also be transformed into a microcapsule when controlling the emulsification size via a facile ultrasonic treatment. As a demonstration, we show that the asymmetric microcapsule shows a high demulsification efficiency (>98%) and cyclic stability (>6 recycle times). Our protocol opens up a new avenue for developing next-generation asymmetric mesoporous materials for various applications.

7.
J Am Chem Soc ; 145(19): 10880-10889, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37130056

RESUMEN

Tin is promising for aqueous batteries (ABs) due to its multiple electrons' reactions, high corrosion resistance, large hydrogen overpotential, and excellent environmental compatibility. However, restricted to the high thermodynamic barrier and the poor electrochemical kinetics, efficient alkaline Sn plating/stripping at facile conditions has not yet been realized. Here, for the first time, we demonstrate a highly reversible stannite-ion electrochemistry and construct a novel paradigm of high-energy Sn-based ABs. Combined spectroscopic characterization, electrochemical evaluation, and theoretical computation reveal the thermodynamic merits with a low reaction energy barrier and feasible H2O participation in Sn-ion reduction as well as the kinetic merits with fastened surface charge transfer and SnO22- diffusion. The resultant alkaline Sn anode delivers a low potential of -1.07 V vs Hg/HgO, a specific capacity of 450 mA h g-1, a Coulombic efficiency of near 100%, superb rate capability at 45.5 A g-1, and excellent cycling durability without dendrite and dead Sn. As a proof of concept, we developed new high-energy Sn-based ABs, including 1.45 V Sn-Ni with 314 W h kg-1 (58 kW kg-1 and over 15,000 cycles) and 1.0 V Sn-air with 420 W h kg-1 (lifespan over 1900 h), on the basis of masses from cathode and anode active materials. The findings prove the feasibility of the alkaline Sn metal anode, and the new suite of high-energy Sn-based ABs may be of immediate benefit toward safe, reliable, and affordable energy storage.

8.
J Am Chem Soc ; 145(44): 24284-24293, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888942

RESUMEN

Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.

9.
J Am Chem Soc ; 144(9): 3892-3901, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191672

RESUMEN

As one of the most important parameters of the nanomotors' motion, precise speed control of enzyme-based nanomotors is highly desirable in many bioapplications. However, owing to the stable physiological environment, it is still very difficult to in situ manipulate the motion of the enzyme-based nanomotors. Herein, inspired by the brakes on vehicles, the near-infrared (NIR) "optical brakes" are introduced in the glucose-driven enzyme-based mesoporous nanomotors to realize remote speed regulation for the first time. The novel nanomotors are rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of the SiO2@Au core@shell nanospheres and the enzymes-modified periodic mesoporous organosilicas (PMOs). The nanomotor can be driven by the biofuel of glucose under the catalysis of enzymes (glucose oxidase/catalase) on the PMO domain. Meanwhile, the Au nanoshell at the SiO2@Au domain enables the generation of the local thermal gradient under the NIR light irradiation, driving the nanomotor by thermophoresis. Taking advantage of the unique Janus nanostructure, the directions of the driving force induced by enzyme catalysis and the thermophoretic force induced by NIR photothermal effect are opposite. Therefore, with the NIR optical speed regulators, the glucose-driven nanomotors can achieve remote speed manipulation from 3.46 to 6.49 µm/s (9.9-18.5 body-length/s) at the fixed glucose concentration, even after covering with a biological tissue. As a proof of concept, the cellar uptake of the such mesoporous nanomotors can be remotely regulated (57.5-109 µg/mg), which offers great potential for designing smart active drug delivery systems based on the mesoporous frameworks of this novel nanomotor.


Asunto(s)
Nanoestructuras , Dióxido de Silicio , Sistemas de Liberación de Medicamentos , Glucosa , Glucosa Oxidasa , Nanoestructuras/química , Dióxido de Silicio/química
10.
J Am Chem Soc ; 144(13): 6091-6099, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316600

RESUMEN

Synthesis of hierarchically porous structures with uniform spatial gradient and structure reinforcement effect still remains a great challenge. Herein, we report the synthesis of zeolite@mesoporous silica core-shell nanospheres (ZeoA@MesoS) with a gradient porous structure through a micellar dynamic assembly strategy. In this case, we find that the size of composite micelles can be dynamically changed with the increase of swelling agents, which in situ act as the building blocks for the modular assembly of gradient mesostructures. The ZeoA@MesoS nanospheres are highly dispersed in solvents with uniform micropores in the inner core and a gradient tubular mesopore shell. As a nanoreactor, such hierarchically gradient porous structures enable the capillary-directed fast mass transfer from the solutions to inner active sites. As a result, the ZeoA@MesoS catalysts deliver a fabulous catalytic yield of ∼75% on the esterification of long-chain carboxylic palmitic acids and high stability even toward water interference, which can be well trapped by the ZeoA core, pushing forward the chemical equilibrium. Moreover, a very remarkable catalytic conversion on the C-H arylation reaction of large N-methylindole is achieved (∼98%) by a Pd-immobilized ZeoA@MesoS catalyst. The water tolerance feature gives a notable enhancement of 26% in catalytic yield compared to the Pd-dendritic mesoporous silica without the zeolite core.


Asunto(s)
Nanosferas , Catálisis , Micelas , Nanosferas/química , Porosidad , Dióxido de Silicio/química
11.
J Am Chem Soc ; 144(45): 20964-20974, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36283036

RESUMEN

Precise synthesis of well-ordered ultrathin nanowire arrays with tunable active surface, though attractive in optoelectronics, remains challenging to date. Herein, well-aligned sub-10 nm TiO2 nanowire arrays with controllable corrugated structure have been synthesized by a unique monomicelle-directed assembly method. The nanowires with an exceptionally small diameter of ∼8 nm abreast grow with an identical adjacent distance of ∼10 nm, forming vertically aligned arrays (∼800 nm thickness) with a large surface area of ∼102 m2 g-1. The corrugated structure consists of bowl-like concave structures (∼5 nm diameter) that are closely arranged along the axis of the ultrathin nanowires. And the diameter of the concave structures can be finely manipulated from ∼2 to 5 nm by simply varying the reaction time. The arrays exhibit excellent charge dynamic properties, leading to a high applied bias photon-to-current efficiency up to 1.4% even at a very low potential of 0.41 VRHE and a superior photocurrent of 1.96 mA cm-2 at 1.23 VRHE. Notably, an underlying mechanism of the hole extraction effect for concave walls is first clarified, demonstrating the exact role of concave walls as the hole collection centers for efficient water splitting.

12.
J Am Chem Soc ; 144(26): 11767-11777, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731994

RESUMEN

Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).

13.
Angew Chem Int Ed Engl ; 61(43): e202211307, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36037030

RESUMEN

A sulfhydryl monomicelles interfacial assembly strategy is presented for the synthesis of fully exposed single-atom-layer Pt clusters on 2D mesoporous TiO2 (SAL-Pt@mTiO2 ) nanosheets. This synthesis features the introduction of the sulfhydryl group in monomicelles to finely realize the controllable co-assembly process of Pt precursors within ordered mesostructures. The resultant SAL-Pt@mTiO2 shows uniform SAL Pt clusters (≈1.2 nm) anchored in ultrathin 2D nanosheets (≈7 nm) with a high surface area (139 m2 g-1 ), a large pore size (≈25 nm) and a high dispersion (≈99 %). Moreover, this strategy is universal for the synthesis of other SAL metal clusters (Pd and Au) on 2D mTiO2 with high exposure and accessibility. When used as a catalyst for hydrogenation of 4-nitrostyrene, the SAL-Pt@mTiO2 shows a high catalytic activity (TOF up to 2424 h-1 ), 100 % selectivity for 4-aminostyrene, good stability, and anti-resistance to thiourea poisoning under relatively mild conditions (25 °C, 10 bar).

14.
Angew Chem Int Ed Engl ; 59(8): 3287-3293, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31821658

RESUMEN

A universal sequential synthesis strategy in aqueous solution is presented for highly uniform core-shell structured photocatalysts, which consist of a metal sulfide light absorber core and a metal sulfide co-catalyst shell. We show that the sequential chemistry can drive the formation of unique core-shell structures controlled by the constant of solubility product of metal sulfides. A variety of metal sulfide core-shell structures have been demonstrated, including CdS@CoSx , CdS@MnSx , CdS@NiSx , CdS@ZnSx , CuS@CdS, and more complexed CdS@ZnSx @CoSx . The obtained strawberry-like CdS@CoSx core-shell structures exhibit a high photocatalytic H2 production activity of 3.92 mmol h-1 and an impressive apparent quantum efficiency of 67.3 % at 420 nm, which is much better than that of pure CdS nanoballs (0.28 mmol h-1 ), CdS/CoSx composites (0.57 mmol h-1 ), and 5 %wt Pt-loaded CdS photocatalysts (1.84 mmol h-1 ).

15.
J Am Chem Soc ; 141(17): 7073-7080, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964289

RESUMEN

Functional mesoporous carbons have attracted significant scientific and technological interest owning to their fascinating and excellent properties. However, controlled synthesis of functional mesoporous carbons with large tunable pore sizes, small particle size, well-designed functionalities, and uniform morphology is still a great challenge. Herein, we report a versatile nanoemulsion assembly approach to prepare N-doped mesoporous carbon nanospheres with high uniformity and large tunable pore sizes (5-37 nm). We show that the organic molecules (e.g., 1,3,5-trimethylbenzene, TMB) not only play an important role in the evolution of pore sizes but also significantly affect the interfacial interaction between soft templates and carbon precursors. As a result, a well-defined Pluronic F127/TMB/dopamine nanoemulsion can be facilely obtained in the ethanol/water system, which directs the polymerization of dopamine into highly uniform polymer nanospheres and their derived N-doped carbon nanospheres with diversely novel structures such as smooth, golf ball, multichambered, and dendritic nanospheres. The resultant uniform dendritic mesoporous carbon nanospheres show an ultralarge pore size (∼37 nm), small particle size (∼128 nm), high surface area (∼635 m2 g-1), and abundant N content (∼6.8 wt %), which deliver high current density and excellent durability toward oxygen reduction reaction in alkaline solution.

16.
J Am Chem Soc ; 138(50): 16533-16541, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27936645

RESUMEN

High-power sodium-ion batteries (SIBs) with long-term cycling attract increasing attention for large-scale energy storage. However, traditional SIBs toward practical applications still suffer from low rate capability and poor cycle induced by pulverization and amorphorization of anodes at high rate (over 5 C) during the fast ion insertion/extraction process. The present work demonstrates a robust strategy for a variety of (Sb-C, Bi-C, Sn-C, Ge-C, Sb-Bi-C) freestanding metal-carbon framework thin films via a space-confined superassembly (SCSA) strategy. The sodium-ion battery employing the Sb-C framework exhibits an unprecedented performance with a high specific capacity of 246 mAh g-1, long life cycle (5000 cycles), and superb capacity retention (almost 100%) at a high rate of 7.5 C (3.51A g-1). Further investigation indicates that the unique framework structure enables unusual reversible crystalline-phase transformation, guaranteeing the fast and long-cyclability sodium storage. This study may open an avenue to developing long-cycle-life and high-power SIBs for practical energy applications.

17.
Environ Sci Technol ; 49(20): 12432-40, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26375261

RESUMEN

To achieve efficient photocatalytic air purification, we constructed an advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid through the in-situ growth of Bi nanospheres on g-C3N4 nanosheets. This Bi-g-C3N4 compound exhibited an exceptionally high and stable visible-light photocatalytic performance for NO removal due to the surface plasmon resonance (SPR) endowed by Bi metal. The SPR property of Bi could conspicuously enhance the visible-light harvesting and the charge separation. The electromagnetic field distribution of Bi spheres involving SPR effect was simulated and reaches its maximum in close proximity to the Bi particle surface. When the Bi metal content was controlled at 25%, the corresponding Bi-g-C3N4 displayed outstanding photocatalytic capability and transcended those of other visible-light photocatalysts. The Bi-g-C3N4 exhibited a high structural stability under repeated photocatalytic runs. A new visible-light-induced SPR-based photocatalysis mechanism with Bi-g-C3N4 was proposed on the basis of the DMPO-ESR spin-trapping. The photoinduced electrons could transfer from g-C3N4 to the Bi metal, as revealed with time-resolved fluorescence spectra. The function of Bi semimetal as a plasmonic cocatalyst for boosting visible light photocatalysis was similar to that of noble metals, which demonstrated a great potential of utilizing the economically feasible Bi element as a substitute for noble metals for the advancement of photocatalysis efficiency.


Asunto(s)
Bismuto/química , Nanoestructuras/química , Óxido Nítrico/aislamiento & purificación , Nitrilos/química , Fotoquímica/métodos , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/aislamiento & purificación , Catálisis , Campos Electromagnéticos , Luz , Óxido Nítrico/química , Resonancia por Plasmón de Superficie
18.
Phys Chem Chem Phys ; 17(16): 10383-90, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25765222

RESUMEN

Semimetal bismuth (Bi), as an emerging non-noble metal-based cocatalyst and plasmonic photocatalyst, has attracted significant attention. In this work, a one-pot solvent-controlled synthesis strategy was utilized for the in situ-deposition of plasmonic Bi nanoparticles onto the surfaces of (BiO)2CO3 microspheres (BOC-WE) using bismuth citrate, sodium carbonate, and ethylene glycol as precursors. The introduction of the Bi nanoparticles has a pivotal effect on the morphology, optical and photocatalytic performance of the pristine (BiO)2CO3. The results indicated that the Bi nanoparticles were generated on the surface of (BiO)2CO3 microspheres via the in situ reduction of Bi(3+) by ethylene glycol. The Bi-deposited (BiO)2CO3 microspheres were used for the photocatalytic purification of NOx in air under visible light irradiation. Significantly, the BOC-WE samples exhibited a drastically promoted photocatalytic performance with a NOx removal ratio (η) of 37.2%, superior to pristine (BiO)2CO3 (η = 19.1%), outperforming other well-known visible light photocatalysts, such as C-doped TiO2 (η = 21.8%), BiOBr (η = 21.3%), BiOI (η = 14.9%) and C3N4 (η = 25.5%). The conspicuously enhanced photocatalytic capability can be attributed to the synergistic effects of the surface plasmon resonance (SPR) effect, increased visible light absorption and the efficient separation of electron-hole pairs induced by the Bi nanoparticles. The Bi nanoparticles can act as a non-noble metal-based cocatalyst for strengthening photocatalytic performance, which is similar to the behavior of noble metals (Au, Ag) in enhancing photocatalysis. The mechanism of visible light photocatalytic NOx oxidation was investigated. DMPO-ESR spin-trapping results demonstrated that hydroxyl radicals were confirmed to be the main active species for NOx photo-oxidation. Due to the SPR effect of Bi, the BOC-WE could produce more hydroxyl radicals than BOC, which was responsible for the enhanced NO photo-oxidation ability. Moreover, the BOC-WE photocatalysts showed high photochemical stability under repeated irradiation. This work demonstrates the feasibility of utilizing low cost Bi cocatalysts as a substitute for noble metals to enhance the performance of other photocatalysts. This work could not only provide new insights into the in situ fabrication of Bi/semiconductor nanocomposites, but also pave a new way for the modification of photocatalysts with non-noble metals as cocatalysts to achieve an enhanced performance for environmental and energetic applications.

19.
Adv Mater ; : e2312374, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686777

RESUMEN

Ultrasmall mesoporous nanoparticles (<50 nm), a unique porous nanomaterial, have been widely studied in many fields in the last decade owing to the abundant advantages, involving rich mesopores, low density, high surface area, numerous reaction sites, large cavity space, ultrasmall size, etc. This paper presents a review of recent advances in the preparation, functionalization, and applications of ultrasmall inorganic mesoporous nanoparticles for the first time. The soft monomicelles-directed method, in contrast to the hard-template and template-free methods, is more flexible in the synthesis of mesoporous nanoparticles. This is because the amphiphilic micelle has tunable functional blocks, controlled molecule masses, configurations and mesostructures. Focus on the soft micelle directing method, monomicelles could be classified into four types, i.e., the Pluronic-type block copolymer monomicelles, laboratory-synthesized amphiphilic block copolymers monomicelles, the single-molecule star-shaped block copolymer monomicelles, and the small-molecule anionic/cationic surfactant monomicelles. This paper also reviews the functionalization of the inner mesopores and the outer surfaces, which includes constructing the yolkshell structures (encapsulated nanoparticles), anchoring the active components packed on the shell and building an asymmetric Janus architecture. Then, several representative applications, involving catalysis, energy storage, and biomedicines are presented. Finally, the prospects and challenges of controlled synthesis and large-scale applications of ultrasmall mesoporous nanoparticles in the future are foreseen.

20.
Adv Mater ; 35(17): e2209288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787111

RESUMEN

Poor thermodynamic stability and sluggish electrochemical kinetics of metallic Zn anode in aqueous solution greatly hamper its practical application. To solve such problems, to date, various zincophilic surface modification strategies are developed, which can facilitate reversible Zn plating/stripping behavior. However, there is still a lack of systematic and fundamental understanding regarding the metrics of thermodynamics inertia and kinetics zincophilia in selecting zincophilic sites. Herein, hetero-metallic interfaces are prioritized for the first time via optimizing different hetero metals (Fe, Co, Ni, Sn, Bi, Cu, Zn, etc.) and synthetic solvents (ethanol, ethylene glycol, n-propanol, etc.). Specifically, both theoretical simulations and experimental results suggest that this Bi@Zn interface can exhibit high efficiency owing to the thermodynamics inertia and kinetics zincophilia. A best practice for prioritizing zincophilic sites in a more practical metric is also proposed. As a proof of concept, the Bi@Zn anode delivers ultralow overpotential of ≈55 mV at a high rate of 10 mA cm-2 and stable cycle life over 4700 cycles. The elaborated "thermodynamics inertia and kinetics metalphilia" metrics for hetero-metallic interfaces can benchmark the success of other metal-based batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA