Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687573

RESUMEN

Kiwifruit is widely cultivated for its high vitamin C content and nutritional value. In January 2022, root rot symptoms were found in about 30% of Actinidia chinensis cv. Jinyan plants grafted on A. deliciosa rootstocks in an orchard located in Sanming (26.32°N, 117.23°E), Fujian Province of China. The affected plants appeared stunted, with brown and decaying roots, some of which were covered with white hyphae. To isolate the pathogen, the surfaces of typical symptomatic roots were sterilized for 30 s using 75% ethanol, followed by four rinses in sterile water, placing on potato dextrose agar (PDA), and incubating away from light at 25°C for 7 days. 16 Globisporangium-like isolates were obtained through hyphal tip isolation, displaying a milky-white appearance with irregular protuberances on the surface, and yellow-white backs with radial fold lines. The isolates were then cultured on corn meal agar for 5 days at 25°C in dark for morphological characteristics. Under microscope, the hyphae appeared as long strips without septa and 4.1 to 8.2 µm wide (average 6.7 µm), containing irregularly sized spherical droplets. Both terminal and intercalary hyphae swellings were observed; these appeared either spherical or subspherical, with some having projections. Their dimensions were 12.3 to 27.6 µm (average 17.3 µm). The oospores were mostly spherical, either plerotic or aplerotic, 11.8 to 22.3 µm wide (average 18.9 µm), with occasional projections. The antheridia were rod-shaped and curved, with one end attached to the oogonia. Amplification of the sequences of internal transcribed spacer (ITS) regions and cytochrome c oxidase subunit I (COI) were conducted using the primers ITS1/ITS4 (White et al. 1990) and OomCoxI-Levlo/OomCoxI-Levup (Robideau et al. 2011), respectively. The sequencing results revealed identical ITS and COI sequences in all 16 isolates. BLASTn analysis of the 969-bp ITS sequence ON202808 showed 99.38-99.59% similarity (965/971bp, 967/971bp) with the KJ162353 and AY598701 sequences from Globisporangium spinosum isolates, while the 700-bp COI sequence ON075783 showed 100% and 99.41% identity (680/680bp, 676/680bp) with the GenBank sequences HQ708835 and HQ708832, respectively, from G. spinosum. Phylogenetic analysis also showed that the obtained isolate (termed MA16) clustered with isolates from G. spinosum on the same evolutionary branch. For pathogenicity testing, four-month-old healthy Jinyan (A. chinensis) plants grown in sterilized media were transferred to sterile petri dishes covered with wet filter paper, and their roots were inoculated with a 5-mm-wide disk of MA16 when cultivated on PDA medium for 5 days. Miliang-1 (A. deliciosa) and Hongyang (A. chinensis) plants were treated similarly. The control groups each included three plants that were inoculated with non-colonized PDA. The plants were kept at 25 °C with a 12-/12-h light/dark cycle for 10 days when the inoculated plants exhibited root rot symptoms similar to those seen in the field, together with rotting and browning of the leaves. The control plants appeared healthy with no symptoms. After re-isolated from infected tissues, the pathogen was verified to be G. spinosum according to its ITS sequence, thus fulfilling the Koch's postulates. Recently, Pythium spinosum has been classified as G. spinosum according to whole-genome sequencing and phylogenomic analysis (Nguyen et al. 2022). Based on the morphological features and pathogenicity results, MA16 was identified as G. spinosum (van der Plaats-Niterink 1981; Huo et al. 2023). This report appears to be the first description of kiwifruit root rots caused by G. spinosum in China, and its identification will assist the development of strategies to counteract the disease.

2.
J Nematol ; 522020.
Artículo en Inglés | MEDLINE | ID: mdl-33829159

RESUMEN

Kiwi is becoming one of the most important fruit in subtropical regions of South Africa with altitudes that confer sufficient chilling requirements. During a survey on biodiversity of plant-parasitic nematodes of kiwi in Magoebaskloof in Limpopo Province, several plant-parasitic nematodes were discovered, with Meloidogyne species occurring at the highest frequency. Nematodes were sampled from roots and the rhizosphere of one stunted Kiwi tree, extracted using the tray method and then fixed. The morphological characters fit well with those of M. hapla. The molecular approach using ITS and 28S rDNA, along with the related phylogenetic analysis, placed the examined population in a group with other populations of M. hapla. Kiwi is being reported as a new host for M. hapla in South Africa.

3.
Plant Mol Biol ; 96(3): 233-244, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29222611

RESUMEN

KEY MESSAGE: Genome-wide targets of Actinidia chinensis SVP2 confirm roles in ABA- and dehydration-mediated growth repression and reveal a conservation in mechanism of action between SVP genes of taxonomically distant Arabidopsis and a woody perennial kiwifruit. The molecular mechanisms underlying growth and dormancy in woody perennials are largely unknown. In Arabidopsis, the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a key role in the progression from vegetative to floral development, and in woody perennials SVP-like genes are also proposed to be involved in controlling dormancy. During kiwifruit development SVP2 has a role in growth inhibition, with high-chill kiwifruit Actinidia deliciosa transgenic lines overexpressing SVP2 showing suppressed bud outgrowth. Transcriptomic analyses of these plants suggests that SVP2 mimics the well-documented abscisic acid (ABA) effect on the plant dehydration response. To corroborate the growth inhibition role of SVP2 in kiwifruit development at the molecular level, we analysed the genome-wide direct targets of SVP2 using chromatin immunoprecipitation followed by high-throughput sequencing in kiwifruit A. chinensis. SVP2 was found to bind to at least 297 target sites in the kiwifruit genome, and potentially modulates 252 genes that function in a range of biological processes, especially those involved in repressing meristem activity and ABA-mediated dehydration pathways. In addition, our ChIP-seq analysis reveals remarkable conservation in mechanism of action between SVP genes of taxonomically distant plant species.


Asunto(s)
Actinidia/genética , Actinidia/fisiología , Regulación de la Expresión Génica de las Plantas , Actinidia/crecimiento & desarrollo , Sequías , Flores/genética , Frutas/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estrés Fisiológico
4.
Plant Pathol J ; 39(3): 245-254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291765

RESUMEN

The plant microbiota plays a crucial role in promoting plant health by facilitating the nutrient acquisition, abiotic stress tolerance, biotic stress resilience, and host immune regulation. Despite decades of research efforts, the precise relationship and function between plants and microorganisms remain unclear. Kiwifruit (Actinidia spp.) is a widely cultivated horticultural crop known for its high vitamin C, potassium, and phytochemical content. In this study, we investigated the microbial communities of kiwifruit across different cultivars (cvs. Deliwoong and Sweetgold) and tissues at various developmental stages. Our results showed that the microbiota community similarity was confirmed between the cultivars using principal coordinates analysis. Network analysis using both degree and eigenvector centrality indicated similar network forms between the cultivars. Furthermore, Streptomycetaceae was identified in the endosphere of cv. Deliwoong by analyzing amplicon sequence variants corresponding to tissues with an eigenvector centrality value of 0.6 or higher. Our findings provide a foundation for maintaining kiwifruit health through the analysis of its microbial community.

5.
Plants (Basel) ; 12(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37653926

RESUMEN

The New Zealand Institute for Plant and Food Research Limited (PFR) supports a large kiwifruit breeding program that includes more than twenty Actinidia species. Almost all the kiwifruit accessions are held as field collections across a range of locations, though not all plants are at multiple locations. An in vitro collection of kiwifruit in New Zealand was established upon the arrival of Pseudomonas syringae pv. Actinadiae-biovar 3 in 2010. The value of an in vitro collection has been emphasized by restrictions on importation of new plants into New Zealand and increasing awareness of the array of biotic and abiotic threats to field collections. The PFR in vitro collection currently holds about 450 genotypes from various species, mostly A. chinensis var. chinensis and A. chinensis var. deliciosa. These collections and the in vitro facilities are used for germplasm conservation, identification of disease-free plants, reference collections and making plants available to users. Management of such a diverse collection requires appropriate protocols, excellent documentation, training, sample tracking and databasing and true-to-type testing, as well as specialized facilities and resources. This review also discusses the New Zealand biosecurity and compliance regime governing kiwifruit plant movement, and how protocols employed by the facility aid the movement of pathogen-free plants within and from New Zealand.

6.
Front Plant Sci ; 14: 1306420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273947

RESUMEN

Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.

7.
Mol Plant Pathol ; 22(10): 1271-1287, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288324

RESUMEN

A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.


Asunto(s)
Actinidia , Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Rhabdoviridae/clasificación , Proteínas Virales , Actinidia/virología , Genoma Viral , Genómica , Sistemas de Lectura Abierta , Filogenia , ARN Viral , Proteínas Virales/genética
8.
Int J Biol Macromol ; 179: 279-291, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675829

RESUMEN

Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) biovar 3 involved all global interest since 2008. We have found that in Psa3 genome, similarly to other P. syringae, there are three putative genes, lscα, lscß and lscγ, coding for levansucrases. These enzymes, breaking the sucrose moiety and releasing glucose can synthetize the fructose polymer levan, a hexopolysaccharide that is well known to be part of the survival strategies of many different bacteria. Considering lscα non-coding because of a premature stop codon, in the present work we cloned and expressed the two putatively functional levansucrases of Psa3, lscß and lscγ, in E. coli and characterized their biochemical properties such as optimum of pH, temperature and ionic strength. Interestingly, we found completely different behaviour for both sucrose splitting activity and levan synthesis between the two proteins; lscγ polymerizes levan quickly at pH 5.0 while lscß has great sucrose hydrolysis activity at pH 7.0. Moreover, we demonstrated that at least in vitro conditions, they are differentially expressed suggesting two distinct roles in the physiology of the bacterium.


Asunto(s)
Actinidia/microbiología , Fructanos/metabolismo , Hexosiltransferasas/química , Enfermedades de las Plantas/microbiología , Pseudomonas syringae , Cinética , Pseudomonas syringae/enzimología , Pseudomonas syringae/aislamiento & purificación
9.
Virus Res ; 275: 197736, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31626876

RESUMEN

Viruses in the genus Emaravirus contain 5-8 negative genomic RNAs and cause severe diseases of plants. In this study, a novel emaravirus, provisionally named Actinidia emaravirus 2 (AcEV-2), was identified from a kiwifruit tree showing leaf mottle and chlorosis symptoms. The genome of AcEV-2 consisted of at least six RNAs (RNAs 1-6) with sizes of 7079, 2252, 1387, 1514, 1744 and 1233 nucleotides (nts), respectively. Proteins encoded by RNAs1-4 of AcEV-2 shared the highest amino acid (aa) sequence identities of 62.2%-77.3% with the corresponding proteins of fig mosaic emaravirues (FMV) and pigeonpea sterility mosaic emaravirus 2 (PPSMV-2). Whilst, the P5 and P6 encoded by AcEV-2 exhibited the highest identities of 44.2% and 39.2% with the corresponding proteins of PPSMV-2. It was the second emaravirus infecting Actinidia trees in China. Preliminary virus detection disclosed the presence of AcEV-2 in three Actinidia species grown in three provinces in the central and southern China.


Asunto(s)
Actinidia/virología , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Proteínas Virales/genética , China , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Virus ARN/aislamiento & purificación , ARN Viral/genética
10.
Front Microbiol ; 11: 602039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391218

RESUMEN

Kiwifruit (Actinidia spp.) is native to China. Viral disease-like symptoms are common on kiwifruit plants. In this study, six libraries prepared from total RNA of leaf samples from 69 kiwifruit plants were subjected to next-generation sequencing (NGS). Actinidia virus 1 (AcV-1), a tentative species in the family Closteroviridae, was discovered in the six libraries. Two full-length and two near-full genome sequences of AcV-1 variants were determined by Sanger sequencing. The genome structure of these Chinese AcV-1 variants was identical to that of isolate K75 and consisted of 12 open reading frames (ORFs). Analyses of these sequences together with the NGS-derived contig sequences revealed high molecular diversity in AcV-1 populations, with the highest sequence variation occurring at ORF1a, ORF2, and ORF3, and the available variants clustered into three phylogenetic clades. For the first time, our study revealed different domain compositions in the viral ORF1a and molecular recombination events among AcV-1 variants. Specific reverse transcriptase-polymerase chain reaction assays disclosed the presence of AcV-1 in plants of four kiwifruit species and unknown Actinidia spp. in seven provinces and one city.

11.
Plants (Basel) ; 10(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396671

RESUMEN

Kiwifruit belong to the genus Actinidia with 54 species apparently all functionally dioecious. The sex-determinants of the type XX/XY, with male heterogametic, operate independently of the ploidy level. Recently, the SyGI protein has been described as the suppressor of female development. In the present study, we exploited the CRISPR/Cas9 technology by targeting two different sites in the SyGI gene in order to induce a stable gene knock-out in two tetraploid male accessions of Actinidia chinensis var. chinensis. The two genotypes showed a regenerative efficiency of 58% and 73%, respectively. Despite not yet being able to verify the phenotypic effects on the flower structure, due to the long time required by tissue-cultured kiwifruit plants to flower, we obtained two regenerated lines showing near fixation of a unique modification in their genome, resulting in both cases in the onset of a premature stop codon, which induces the putative gene knock-out. Evaluation of gRNA1 locus for both regenerated plantlets resulted in co-amplification of a minor variant differing from the target region for a single nucleotide. A genomic duplication of the region in proximity of the Y genomic region could be postulated.

12.
Food Res Int ; 127: 108753, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31882116

RESUMEN

Kiwis are an example of fruits with excellent bioactive properties worldwide appreciated and consumed generating tons of waste. Thus, the objective of this work was to compare two varieties of kiwi: Actinidia deliciosa cv. "Hayward" (green) and Actinidia spp. (red) regarding the nutritional value of their pulps, chemical composition and bioactivities of each pulp and peel. The results revealed that pulps have a high water content and low amount of other macronutrients. Both parts of red kiwi presented the highest tocopherols content and red kiwi pulp presented the highest content in ascorbic acid. In general, the peels exhibited the highest antioxidant activity and green kiwi peels showed cytotoxicity and anti-inflammatory activity, which could be related to its higher content in phenolic compounds, especially B-type (epi)catechin dimer. Therefore, kiwi components currently underutilized may be indicated as a source of natural functionalizing ingredients with several benefits for human health.


Asunto(s)
Actinidia/química , Frutas/química , Actinidia/clasificación , Frutas/clasificación , Humanos , Valor Nutritivo
13.
Food Chem ; 240: 579-587, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28946314

RESUMEN

In this report, the amylose composition and molecular structure of starches from the core and outer pericarp of 3 golden kiwifruit varieties were characterised, using enzymatic and chromatographic techniques. Starches from the core tissues of kiwifruit tend to have higher amylose contents (by ∼3-5%) and longer unit chains of both amylopectins and their φ, ß-limit dextrins (LDs) than those of the outer pericarp starches. The contents of short B-chains of the φ, ß-LDs of amylopectins from the outer pericarp were higher (by ∼3%) than those of φ, ß-LDs of the core amylopectins. Overall, the composition and structure of starches from the outer pericarp and core tissues of a golden kiwifruit were different. This study provides a structural basis to further investigate the starch degradation in kiwifruit, which may be of importance for the storage and eating quality of the fruit.


Asunto(s)
Actinidia , Amilopectina , Amilosa , Polímeros , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA