Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 708: 149813, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38522403

RESUMEN

The chemotherapeutic agent tegafur, a prodrug that prolongs the half-life of fluorouracil (5-FU), exerts antitumor effects against various cancers. Since tegafur is metabolized to 5-FU by CYP2A6 in the liver, the expression of CYP2A6 determines the effect of tegafur. Here, we report that the expression rhythm of Cyp2a5, a homolog of human CYP2A6, in female mice causes dosing time-dependent differences in tegafur metabolism. In the livers of female mice, CYP2A5 expression showed a circadian rhythm, peaking during the dark period. This rhythm is regulated by RORA, a core clock component, and abrogation of the CYP2A5 activity abolished the time-dependent difference in the rate of tegafur metabolism in female mice. Furthermore, administration of tegafur to mice transplanted with 4T1 breast cancer cells during the dark period suppressed increases in tumor size compared to female mice treated during the light period. Our findings reveal a novel relationship between 5-FU prodrugs and circadian clock machinery, potentially influencing antitumor effects, and contributing to the development of time-aware chemotherapy regimens for breast cancer.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Neoplasias de la Mama , Femenino , Humanos , Animales , Ratones , Tegafur/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Fluorouracilo/farmacología , Fluorouracilo/metabolismo , Ritmo Circadiano
2.
Mol Pharm ; 20(2): 1222-1229, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36583631

RESUMEN

Systemic exposure of metronidazole is increased in patients with inflammatory bowel diseases (IBDs), while the underlying mechanism remains unknown. Here, we aim to decipher the mechanisms by which experimental colitis regulates metronidazole disposition in mice. We first confirmed that the systemic exposure of metronidazole was elevated in dextran sulfate sodium (DSS)-induced experimental colitis. Hepatic microsomal incubation with metronidazole revealed that the production rate of 2-hydroxymetronidazole was inhibited, suggestive of a diminished hydroxylation reaction upon colitis. Remarkably, the hydroxylation reaction of metronidazole was selectively catalyzed by CYP2A5, which was downregulated in the liver of colitis mice. In addition, hepatic nuclear factor (NF)-κB (a prototypical and critical signaling pathway in inflammation) was activated in colitis mice. Luciferase reporter and chromatin immunoprecipitation assay indicated that NF-κB downregulated Cyp2a5 transcription through binding to an NF-κB binding site (-1711 to -1720 bp) in the promoter. We further verified that the regulatory effects of colitis on CYP2A5 depended on the disease itself rather than the DSS compound. First, one-day administration of DSS did not alter mRNA and protein levels of CYP2A5. Moreover, CYP2A5 was suppressed in the Il-10-/- spontaneously developing colitis model. Furthermore, Cyp2a5 expression was downregulated in both groups of mice with modest or severe colitis, whereas the expression change was much more significant in severe colitis as compared to modest colitis. Altogether, activated hepatic NF-κB in experimental colitis regulates CYP2A5 and metronidazole disposition, revealing the mechanism of pharmacokinetic instability under IBDs, and providing a theoretical foundation for rational drug use in the future.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Colitis , Animales , Ratones , FN-kappa B/metabolismo , Metronidazol/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Transducción de Señal , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Hidrocarburo de Aril Hidroxilasas/efectos adversos , Hidrocarburo de Aril Hidroxilasas/metabolismo
3.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375250

RESUMEN

Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Familia 2 del Citocromo P450/metabolismo , Metilación de ADN , Regulación de la Expresión Génica/efectos de los fármacos , Inactivación Metabólica , Nicotina/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Humo/efectos adversos , Animales , Animales Recién Nacidos , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/genética , Familia 2 del Citocromo P450/química , Familia 2 del Citocromo P450/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Regiones Promotoras Genéticas
4.
Biochem Biophys Res Commun ; 512(1): 119-124, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30876690

RESUMEN

CYP2A5 is a major enzyme responsible for nicotine and cotinine metabolism in mice. Nicotine and cotinine enhance alcoholic fatty liver in wild type (WT) mice but not in CYP2A5 knockout (KO) mice, and reactive oxygen species (ROS) generated during the CYP2A5-mediated metabolism contributes to the enhancing effect. In combination with ethanol, nicotine and cotinine increased lipid peroxidation end product 4-hydroxynonenal (HNE) in WT mice but not in KO mice. In ethanol-fed KO mice, only 5 and 10 genes were regulated by nicotine and cotinine, respectively. However, in ethanol-fed WT mice, 59 and 104 genes were regulated by nicotine and cotinine, respectively, and 7 genes were up-regulated by both nicotine and cotinine. Plin 2 and Cdkn1a are among the 7 genes. Plin2 encodes adipose differentiation-related protein (ADRP), a lipid droplet-associated protein, which was confirmed to be increased by nicotine and cotinine in WT mice but not in KO mice. Cdkn1a encodes P21 and elevated P21 in nuclei was also confirmed. HNE can increase P21 and P21 inhibit cell proliferation. Consistently, hepatocyte proliferation markers proliferating cell nuclear antigen (PCNA) and Ki67 were decreased in WT mice but not in KO mice by nicotine/ethanol and cotinine/ethanol, respectively. These results suggest that inhibition of liver proliferation via a ROS-HNE-P21 pathway is involved in nicotine- and cotinine-enhanced alcoholic fatty liver.


Asunto(s)
Aldehídos/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/patología , Animales , Hidrocarburo de Aril Hidroxilasas/deficiencia , Hidrocarburo de Aril Hidroxilasas/genética , Proliferación Celular/efectos de los fármacos , Cotinina/administración & dosificación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Familia 2 del Citocromo P450/deficiencia , Familia 2 del Citocromo P450/genética , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/genética , Femenino , Hepatocitos/metabolismo , Hepatocitos/patología , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/genética , Ratones , Ratones Noqueados , Nicotina/administración & dosificación , Perilipina-2/genética , Perilipina-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos
5.
Biochem Genet ; 54(1): 29-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26423681

RESUMEN

Abnormal fatty acid metabolism is observed throughout nonalcoholic fatty liver disease (NAFLD) pathogenesis, and fatty acid storage is an important inducing factor in insulin resistance, lipid oxidation, hepatic cell damage, and inflammation. During NAFLD pathogenesis, changes in blood and liver contents of different fatty acid types also vary. Cytochrome P450 2A5 (CYP2A5), an important enzyme in mouse liver, metabolizes many drugs and activates multiple pro-carcinogens with widely varying structures. According to the changes in liver fatty acid profiles observed in NAFLD animal models developed in our laboratory and others, saturated (PA/palmitic, and SA/stearic acids) and unsaturated (OA/oleic, LA/linoleic, ALA/α-linolenic and AA/arachidonic acids) fatty acids were selected to induce mouse primary hepatocytes, at concentrations under 1 mM, as detected by MTT assay. After 24 h treatment with various fatty acid concentrations and types, CYP2A5 mRNA and protein amounts, and enzyme activity were determined by real-time PCR, Western blot, and Coumarin 7-hydroxylation, respectively. Meanwhile, Nrf2 mRNA and protein levels were evaluated by real-time PCR and Western blot. The results indicated that saturated fatty acids are more potent in inducing CYP2A5 than unsaturated ones, except arachidonic acid. In addition, the changes in CYP2A5 expression were consistent with the alterations observed in Nrf2 expression, indicating that Nrf2 might play a regulatory role in CYP2A5 expression.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Familia 2 del Citocromo P450 , Hepatocitos/enzimología , Hepatocitos/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo
6.
Toxicol Appl Pharmacol ; 282(1): 77-89, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25478736

RESUMEN

The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Bilirrubina/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hígado/enzimología , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/enzimología , Estrés Oxidativo , Transporte Activo de Núcleo Celular , Adaptación Fisiológica , Animales , Antioxidantes/farmacología , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Familia 2 del Citocromo P450 , Inhibidores Enzimáticos/farmacología , Ferredoxina-NADP Reductasa/metabolismo , Glucuronosiltransferasa/metabolismo , Cinética , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos DBA , Microsomas Hepáticos/enzimología , Mitocondrias Hepáticas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Carbonilación Proteica
7.
Biochem Pharmacol ; 217: 115843, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797722

RESUMEN

CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.


Asunto(s)
Ritmo Circadiano , Criptocromos , Factores de Transcripción , Animales , Ratones , Ritmo Circadiano/genética , Hígado , Luciferasas , ARN Mensajero , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo
8.
Front Microbiol ; 13: 944416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903481

RESUMEN

Background and Aims: Drug-induced liver injury (DILI) is a common cause of acute liver failure and represents a significant global public health problem. When discussing the gut-liver axis, although a great deal of research has focused on the role of gut microbiota in regulating the progression of DILI, the gut commensal fungal component has not yet been functionally identified. Methods: Mice were pretreated with fluconazole (FC) to deplete the gut commensal fungi and were then subject to acetaminophen (APAP) gavage. In addition, transcriptome sequencing was performed to identify differentially expressed genes (DEGs) between control and fluconazole-pretreated groups of the mice challenged with APAP. Results: Gut commensal fungi ablation through fluconazole pretreatment predisposed mice to APAP-induced hepatotoxicity, characterized by elevated serum liver enzyme levels and more severe centrilobular necrosis, which appears to be caused by robust inflammation and oxidative stress. The 16S rDNA sequencing results indicated that Akkermansia muciniphila abundance had significantly decreased in gut fungi-depleted mice, whereas increased abundance of Helicobacter rodentium was observed. The gene interaction network between DEGs identified by the transcriptome sequencing highlighted a significant enrichment of Cyp2a5 in the liver of APAP-treated mice that were preadministrated with fluconazole. Pharmacological inhibition of Cyp2a5 by 8-methoxypsoralen (8-MOP) could significantly attenuate hepatic inflammation and oxidative stress in mice, thereby conferring resistance to acute liver injury caused by APAP administration. Conclusion: Our data highlighted the significance of gut commensal fungi in hepatic inflammation and oxidative stress of APAP mice, shedding light on promising therapeutic strategies targeting Cyp2a5 for DILI treatment.

9.
Epigenetics ; 15(12): 1370-1385, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32573327

RESUMEN

Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Familia 2 del Citocromo P450/genética , Metilación de ADN , Hígado/metabolismo , Nicotina/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Contaminación por Humo de Tabaco/efectos adversos , Animales , Islas de CpG , Femenino , Hígado/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Brain Sci ; 10(10)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023022

RESUMEN

We assessed if there were any sex-related differences in the ability of nicotine to increase plasma corticosterone secretion after single or repeated nicotine administration. For single-dose studies, male and female mice were habituated to the test room for 1 h and injected with saline or nicotine (0.25 or 1 mg/kg, subcutaneously (s.c.)). In repeated-dosing studies, mice were injected with saline or nicotine (1 mg/kg, s.c.) once daily for six days, and, on day 7, received nicotine (1 mg/kg, s.c.). Mice were then euthanized 15 min later, and trunk blood was collected for the measurement of corticosterone, nicotine, and cotinine. Our results showed that saline or nicotine each significantly increased plasma corticosterone levels in both males and females, with a greater response in female mice. Plasma corticosterone levels were increased in male but not female mice after being treated repeatedly compared to single nicotine administration. The level of cotinine, a biomarker of nicotine use, was significantly higher in female than in male mice. Taken together, these novel findings suggest that female mice respond to nicotine and the stress of handling more than male mice and provide for the first-time quantitative data on male-female differences in nicotine-induced elevations of corticosterone and cotinine plasma levels.

11.
Curr Pharm Des ; 24(14): 1502-1517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29637855

RESUMEN

Alcohol consumption causes liver diseases, designated as Alcoholic Liver Disease (ALD). Because alcohol is detoxified by alcohol dehydrogenase (ADH), a major ethanol metabolism system, the development of ALD was initially believed to be due to malnutrition caused by alcohol metabolism in liver. The discovery of the microsomal ethanol oxidizing system (MEOS) changed this dogma. Cytochrome P450 enzymes (CYP) constitute the major components of MEOS. Cytochrome P450 2E1 (CYP2E1) in MEOS is one of the major ROS generators in liver and is considered to be contributive to ALD. Our labs have been studying the relationship between CYP2E1 and ALD for many years. Recently, we found that human CYP2A6 and its mouse analog CYP2A5 are also induced by alcohol. In mice, the alcohol induction of CYP2A5 is CYP2E1-dependent. Unlike CYP2E1, CYP2A5 protects against the development of ALD. The relationship of CYP2E1, CYP2A5, and ALD is a major focus of this review.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatopatías Alcohólicas/metabolismo , Animales , Humanos
12.
Toxicology ; 379: 12-21, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131861

RESUMEN

BACKGROUND & AIMS: Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5-/-) mice develop more severe alcoholic fatty liver than Cyp2a5+/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα-/-) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5-/- mice. METHODS: Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. RESULTS: More severe alcoholic fatty liver disease was developed in Cyp2a5-/- mice than in Cyp2a5+/+ mice. Basal FGF21 levels were higher in Cyp2a5-/- mice than in Cyp2a5+/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5-/- mice while FGF21 was induced by ethanol in Cyp2a5+/+ mice. Basal levels of serum FGF21 were lower in Pparα-/- mice than in Pparα+/+ mice; ethanol induced FGF21 in Pparα+/+ mice but not in Pparα-/- mice, whereas ethanol induced hypertriglyceridemia in Pparα-/- mice but not in Pparα+/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα-/- mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα-/-/Cyp2a5-/-) mice developed more severe alcoholic fatty liver than Pparα+/+/Cyp2a5-/- mice. CONCLUSIONS: These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/fisiología , Familia 2 del Citocromo P450/fisiología , Hígado Graso Alcohólico/prevención & control , Factores de Crecimiento de Fibroblastos/fisiología , PPAR alfa/fisiología , Animales , Hígado Graso Alcohólico/etiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/fisiología
13.
Curr Mol Pharmacol ; 10(3): 172-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26278389

RESUMEN

This article reviews recent studies on CYP2E1-mediated alcoholic liver injury, the induction of CYP2A5 by alcohol and the mechanism for this upregulation, especially the permissive role of CYP2E1 in the induction of CYP2A5 by alcohol and the CYP2E1-ROS-Nrf2 pathway, and protective effects of CYP2A5 against ethanol-induced oxidative liver injury. Ethanol can induce CYP2E1, an active generator of reactive oxygen species (ROS), and CYP2E1 is a contributing factor for alcoholinduced oxidative liver injury. CYP2A5, another isoform of cytochrome P450, can also be induced by ethanol. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity, protein and mRNA levels as compared to pair-fed controls. This induction was blunted in CYP2E1 knockout (cyp2e1-/-) mice but was restored when human CYP2E1 was reintroduced and expressed in cyp2e1-/- mice. Ethanol-induced CYP2E1 co-localized with CYP2A5 and preceded the elevation of CYP2A5. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol elevation of ROS and blunted the alcohol induction of CYP2A5, but not CYP2E1, suggesting ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. The antioxidants blocked the activation of Nrf2, a transcription factor known to upregulate expression of CYP2A5. When alcohol-induced liver injury was enhanced in Nrf2 knockout (Nrf2-/-) mice, alcohol elevation of CYP2A5 but not CYP2E1 was also lower in Nrf2-/- mice. CYP2A5 knockout (cyp2a5-/-) mice exhibited an enhanced alcoholic liver injury compared with WT mice as indicated by serum ALT, steatosis and necroinflammation. Alcohol-induced hyperglycemia were observed in cyp2a5-/- mice but not in WT mice.


Asunto(s)
Familia 2 del Citocromo P450/metabolismo , Hepatopatías Alcohólicas/enzimología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP2E1/metabolismo , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/enzimología , Hiperglucemia/patología , Hepatopatías Alcohólicas/patología , Transducción de Señal , Regulación hacia Arriba
14.
Hum Exp Toxicol ; 36(1): 33-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26944940

RESUMEN

Pentavalent antimonial (Sb5+) drugs such as meglumine antimoniate (MA) are the mainstay treatment of leishmaniases in developing countries. The effects of these compounds on drug-metabolizing enzymes have not been characterized and their potential pharmacokinetic interactions with other drugs are therefore unknown. The present study investigated whether treatment with MA (300 mg Sb5+/kg body weight/day, subcutaneously) for 24 days affected the activities of cytochrome P450 (CYP)1A (ethoxyresorufin- O-deethylase), CYP2A5 (coumarin 7-hydroxylase), CYP2E1 ( p-nitrophenol-hydroxylase), CYP2B9/10 (benzyloxy-resorufin- O-debenzylase), or CYP3A11 (erythromycin- N-demethylase) in the livers of Swiss Webster (SW) and DBA-2 male and female mice. The results showed that CYP2A5-, CYP2E1-, and CYP3A11-catalyzed reactions were unaffected by MA treatment. A decrease in CYP2B9/10 activity was noted in DBA-2 females (but not males) and was not observed in SW males or females. However, repeated MA administration reduced mouse liver CYP1A activity. CYP1A2 messenger RNA (mRNA) levels were not affected by MA and in vitro exposure of mouse liver microsomes to Sb3+ and Sb5+ did not reduce CYP1A activity. These findings suggested that in vivo treatment with Sb5+ drugs depressed CYP1A activity, without downregulating CYP1A2 mRNA expression. Since in vitro treatment of liver microsomes failed to inhibit CYP1A activity, this effect may require intact cells.

15.
BMC Res Notes ; 10(1): 125, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298240

RESUMEN

BACKGROUND: Cytochrome P450 2A5 (Cyp2a5), a mouse enzyme orthologous of human CYP2A6, catalyzes a number of toxicologically important reactions, including the metabolism of nicotine, aflatoxin B1, and several other xeno- and endobiotics. Cyp2a5 expression is complex and not yet fully understood. We investigated inter-strain differences in the activity and mRNA expression of hepatic Cyp2a5. Cyp1a1/2 and Cyp2b9/10 activities were evaluated for comparative purposes. Data on the interstrain differences in the expression and activity of Cyp2a5 are important to select a suitable mouse model for studying CYP2A6-mediated metabolism. RESULTS: Activity of Cyp2a5 (coumarin 7-hydroxylase) was highest in DBA-2 and DBA-1, intermediate in B6D2F1 (hybrid) and low in the remaining strains (C57BL/6, C57BL/10, CBA, BALB/cAn, SW). Contrasting with the activity, background levels of Cyp2a4/5 mRNA did not differ between high- and low-activity murine strains. Phenobarbital (PB, 80 mg/kg body weight/day × 3 days, i.p.) increased Cyp2a5, Cyp1a1/2 (ethoxyresorufin-O-deethylase) and Cyp2b9/10 (bezyloxyresorufin-O-debenzylase) activities while only Cyp2a5 was enhanced by pyrazole (PYR, 100 mg/kg body weight/day × 3 days, i.p.). Inductions of Cyp2a5 activity by PYR and PB were accompanied by increases of Cyp2a4/5 mRNA. PYR and PB did not upregulate heme oxygenase-1 (hmox-1) mRNA expression in any strain, a finding that is apparently at odds with the notion that Cyp2a5 and hmox-1 inductions are coordinated events. CONCLUSIONS: Since background levels of Cyp2a4/5 gene transcripts of high-activity strains did not differ from those of low-activity mice, distinct constitutive activities did not result from different transcription rates and/or mRNA half-lives. Results therefore suggested that interstrain differences in constitutive activity of Cyp2a5 possibly arise from distinct translation efficiencies, protein half-lives and/or enzyme kinetics toward the substrate. Data from this study indicated that all tested strains are suitable models for studying toxicants that are substrates for human CYP2A6; DBA-2, DBA-1 and the hybrid B62DF1, however, have the advantage of presenting high constitutive activities of Cyp2a5.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Familia 2 del Citocromo P450/metabolismo , Animales , Femenino , Ratones , Especificidad de la Especie
16.
Front Pharmacol ; 8: 233, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28555106

RESUMEN

To investigate the role of hepatic 18-carbon fatty acids (FA) accumulation in regulating CYP2A5/2A6 and the significance of Nrf2 in the process during hepatocytes steatosis, Nrf2-null, and wild type mice fed with high-fat diet (HFD), and Nrf2 silenced or over expressed HepG2 cells administered with 18-carbon FA were used. HE and Oil Red O staining were used for mice hepatic pathological examination. The mRNA and protein expressions were measured with real-time PCR and Western blot. The results showed that hepatic CYP2A5 and Nrf2 expression levels were increased in HFD fed mice accompanied with hepatic 18-carbon FA accumulation. The Nrf2 expression was increased dose-dependently in cells administered with increasing concentrations of stearic acid, oleic acid, and alpha-linolenic acid. The Nrf2 expression was dose-dependently decreased in cells treated with increasing concentrations of linoleic acid, but the Nrf2 expression level was still found higher than the control cells. The CYP2A6 expression was increased dose-dependently in increasing 18-carbon FA treated cells. The HFD-induced up-regulation of hepatic CYP2A5 in vivo and the 18-carbon FA treatment induced up-regulation of CYP2A6 in HepG2 cells were, respectively, inhibited by Nrf2 deficiency and Nrf2 silencing. While the basal expression of mouse hepatic CYP2A5 was not impeded by Nrf2 deletion. Nrf2 over expression improved the up-regulation of CYP2A6 induced by 18-carbon FA. As the classical target gene of Nrf2, GSTA1 mRNA relative expression was increased in Nrf2 over expressed cells and was decreased in Nrf2 silenced cells. In presence or absence of 18-carbon FA treatment, the change of CYP2A6 expression level was similar to GSTA1 in Nrf2 silenced or over expressed HepG2 cells. It was concluded that HFD-induced hepatic 18-carbon FA accumulation contributes to the up-regulation of CYP2A5/2A6 via activating Nrf2. However, the CYP2A5/2A6 expression does not only depend on Nrf2.

17.
React Oxyg Species (Apex) ; 1(2): 117-130, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29756048

RESUMEN

Hepatic cytochrome P450 (CYP) 2E1 and CYP2A5 activate many important drugs and hepatotoxins. CYP2E1 is induced by alcohol, but whether CYP2A5 is upregulated by alcohol is not known. This article reviews recent studies on the induction of CYP2A5 by alcohol and the mechanism and role of reactive oxygen species (ROS) in this upregulation. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity and protein and mRNA levels. This induction was blunted in CYP2E1 knockout mice and by a CYP2E1 inhibitor, but was restored in CYP2E1 knockin mice, suggesting a role for CYP2E1 in the induction of CYP2A5 by alcohol. Since CYP2E1 actively generates ROS, the possible role of ROS in the induction of CYP2A5 by alcohol was determined. ROS production was elevated by ethanol treatment. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol-induced elevation of ROS and blunted the alcohol-mediated induction of CYP2A5. These results suggest that ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. Alcohol treatment activated nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), a transcription factor which up-regulates expression of CYP2A5. The antioxidants blocked the activation of Nrf2. The alcohol-induced elevation of CYP2A5, but not CYP2E1, was lower in Nrf2 knockout mice. We propose that increased generation of ROS from the alcohol-induced CYP2E1 activates Nrf2, which subsequently up-regulates the expression of CYP2A5. Thus, a novel consequence of the alcohol-mediated induction of CYP2E1 and increase in ROS is the activation of redox-sensitive transcription factors, such as Nrf2, and expression of CYP2A5. Further perspectives on this alcohol-CYP2E1-ROS-Nrf2-CYP2A5 pathway are presented.

18.
Drug Metab Pharmacokinet ; 30(4): 314-20, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26210672

RESUMEN

8-Methoxypsoralen (8-MOP) is a well established drug in the treatment of various skin diseases. Pretreatment of mice with 8-MOP before administration of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) significantly reduced the incidence of NNK-induced tumor. The present study was designed to evaluate the in vivo effects of 8-MOP on the bioactivation of NNK in mice. Decrease in the α-hydroxylation of NNK in mouse blood and tissues was observed as the most pronounced effect of 8-MOP. The catalytic property of cytochrome P450 2A5 (CYP2A5) enzyme in mice was determined by the coumarin 7-hydroxylation reaction, suggesting that 8-MOP produced remarkable inhibition on CYP2A5 in female C57BL/6 mice. These results implied that 8-MOP could prevent NNK-induced mutagenesis and tumorigenesis in mice through the inhibition of NNK α-hydroxylation, which may be achieved through the effect of 8-MOP on the bioactivities of CYP2A5.


Asunto(s)
Metoxaleno/farmacología , Nitrosaminas/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Carcinogénesis/inducido químicamente , Carcinógenos , Catálisis/efectos de los fármacos , Cumarinas/metabolismo , Familia 2 del Citocromo P450 , Femenino , Hidroxilación/efectos de los fármacos , Imidazoles/metabolismo , Ratones , Ratones Endogámicos C57BL , Nitrosaminas/efectos adversos
19.
J Proteomics ; 108: 171-87, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24859727

RESUMEN

The transcription factor Nrf2 is a master regulator of cellular defence: Nrf2 null mice (Nrf2((-/-))) are highly susceptible to chemically induced toxicities. We report a comparative iTRAQ-based study in Nrf2((-/-)) mice treated with a potent inducer, methyl-2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-me; bardoxolone -methyl), to define both the Nrf2-dependent basal and inducible hepatoproteomes. One thousand five hundred twenty-one proteins were fully quantified (FDR <1%). One hundred sixty-one were significantly different (P<0.05) between WT and Nrf2((-/-)) mice, confirming extensive constitutive regulation by Nrf2. Treatment with CDDO-me (3mg/kg; i.p.) resulted in significantly altered expression of 43 proteins at 24h in WT animals. Six proteins were regulated at both basal and inducible levels exhibiting the largest dynamic range of Nrf2 regulation: cytochrome P4502A5 (CYP2A5; 17.2-fold), glutathione-S-transferase-Mu 3 (GSTM3; 6.4-fold), glutathione-S-transferase Mu 1 (GSTM1; 5.9-fold), ectonucleoside-triphosphate diphosphohydrolase (ENTPD5; 4.6-fold), UDP-glucose-6-dehydrogenase (UDPGDH; 4.1-fold) and epoxide hydrolase (EPHX1; 3.0-fold). These proteins, or their products, thus provide a potential source of biomarkers for Nrf2 activity. ENTPD5 is of interest due to its emerging role in AKT signalling and, to our knowledge, this protein has not been previously shown to be Nrf2-dependent. Only two proteins altered by CDDO-me in WT animals were similarly affected in Nrf2((-/-)) mice, demonstrating the high degree of selectivity of CDDO-me for the Nrf2:Keap1 signalling pathway. BIOLOGICAL SIGNIFICANCE: The Nrf2:Keap1 signalling pathway is attracting considerable interest as a therapeutic target for different disease conditions. For example, CDDO-me (bardoxolone methyl) was investigated in clinical trials for the treatment of acute kidney disease, and dimethyl fumarate, recently approved for reducing relapse rate in multiple sclerosis, is a potent Nrf2 inducer. Such compounds have been suggested to act through multiple mechanisms; therefore, it is important to define the selectivity of Nrf2 inducers to assess the potential for off-target effects that may lead to adverse drug reactions, and to provide biomarkers with which to assess therapeutic efficacy. Whilst there is considerable information on the global action of such inducers at the mRNA level, this is the first study to catalogue the hepatic protein expression profile following acute exposure to CDDO-me in mice. At a dose shown to evoke maximal Nrf2 induction in the liver, CDDO-me appeared highly selective for known Nrf2-regulated proteins. Using the transgenic Nrf2((-/-)) mouse model, it could be shown that 97% of proteins induced in wild type mice were associated with a functioning Nrf2 signalling pathway. This analysis allowed us to identify a panel of proteins that were regulated both basally and following Nrf2 induction. Identification of these proteins, which display a large magnitude of variation in their expression, provides a rich source of potential biomarkers for Nrf2 activity for use in experimental animals, and which may be translatable to man to define individual susceptibility to chemical stress, including that associated with drugs, and also to monitor the pharmacological response to Nrf2 inducers.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Proteoma/biosíntesis , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Hígado , Masculino , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Ácido Oleanólico/toxicidad , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Proteoma/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
20.
Redox Biol ; 2: 284-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24494203

RESUMEN

Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Cetonas/administración & dosificación , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fenobarbital/administración & dosificación , Esteroide Hidroxilasas/genética , Animales , Familia 2 del Citocromo P450 , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Cetonas/farmacología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Fenobarbital/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA