Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(4): 1099-1114.e10, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30876876

RESUMEN

Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1ß (IL-1ß) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1ß-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Colitis Ulcerosa/inmunología , Microbioma Gastrointestinal/inmunología , Inmunoglobulina G/inmunología , Interleucina-1beta/inmunología , Células Th17/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica , Genotipo , Humanos , Inflamación , Interleucina-8/biosíntesis , Interleucina-8/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Macrófagos/inmunología , Ratones , Fagocitos/inmunología , ARN Mensajero/biosíntesis , Especies Reactivas de Oxígeno , Receptores de IgG/biosíntesis , Receptores de IgG/genética , Receptores de IgG/inmunología
2.
Eur J Immunol ; 52(5): 753-759, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35133670

RESUMEN

IgG is the predominant antibody class generated during infections and used for the generation of therapeutic antibodies. Antibodies are mainly characterized in or generated from animal models that support particular infections, respond to particular antigens or allow the generation of hybridomas. Due to the availability of numerous transgenic mouse models and the ease of performing bioassays with human blood cells in vitro, most antibodies from species other than mice and humans are tested in vitro using human cells and/or in vivo using mice. In this process, it is expected, but not yet systematically documented, that IgG from these species interact with human or mouse IgG receptors (FcγRs). In this study, we undertook a systematic assessment of binding specificities of IgG from various species to the families of mouse and human FcγRs including their polymorphic variants. Our results document the specific binding patterns for each of these IgG (sub)classes, reveal possible caveats of antibody-based immunoassays, and will be a useful reference for the transition from one animal model to preclinical mouse models or human cell-based bioassays.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Animales , Proteínas Portadoras/metabolismo , Humanos , Hibridomas , Ratones , Ratones Transgénicos
3.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37477828

RESUMEN

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Vacuna BNT162 , Inmunoglobulina G , Mutación , Receptores de IgG , SARS-CoV-2/genética
4.
Proc Natl Acad Sci U S A ; 117(26): 15160-15171, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541026

RESUMEN

IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1ß, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1ß and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.


Asunto(s)
Reprogramación Celular/fisiología , Nefritis Lúpica/metabolismo , Animales , Células Cultivadas , Dinoprostona/genética , Dinoprostona/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Glucólisis/fisiología , Humanos , Inmunoglobulina G/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Riñón/citología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores de IgG/genética , Receptores de IgG/metabolismo
5.
Clin Exp Immunol ; 208(3): 361-371, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35536993

RESUMEN

Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in many inflammatory conditions including Multisystem Inflammatory Syndrome-Children (MIS-C) and Kawasaki disease (KD). However, the exact mechanisms underlying its anti-inflammatory action are incompletely characterized. Here, we show that in KD, a pediatric acute vasculitis that affects the coronary arteries, IVIG induces a repertoire of natural Treg that recognize immunodominant peptides in the Fc heavy chain constant region. To address which antigen-presenting cell (APC) populations present Fc peptides to Treg, we studied the uptake of IgG by innate cells in subacute KD patients 2 weeks after IVIG and in children 1.6-14 years after KD. Healthy adults served as controls. IgG at high concentrations was internalized predominantly by two myeloid dendritic cell (DC) lineages, CD14+ cDC2 and ILT-4+ CD4+ tmDC mostly through Fcγ receptor (R) II and to a lesser extent FcγRIII. Following IgG internalization, these two DC lineages secreted IL-10 and presented processed Fc peptides to Treg. The validation of IVIG function in expanding Fc-specific Treg presented by CD14+ cDC2 and ILT-4+ CD4+ tmDC was addressed in a small cohort of patients with MIS-C. Taken together, these results suggest a novel immune regulatory function of IgG in activating tolerogenic innate cells and expanding Treg, which reveals an important anti-inflammatory mechanism of action of IVIG.


Asunto(s)
Inmunoglobulinas Intravenosas , Síndrome Mucocutáneo Linfonodular , Adulto , Antiinflamatorios/uso terapéutico , Niño , Células Dendríticas , Humanos , Inmunoglobulinas Intravenosas/farmacología , Inmunoglobulinas Intravenosas/uso terapéutico , Interleucina-10 , Linfocitos T Reguladores
6.
Pharm Res ; 39(1): 89-103, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34961908

RESUMEN

PURPOSE: Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. METHODS: The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. RESULTS: Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. CONCLUSIONS: These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Inmunoconjugados , Receptores de IgG , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Línea Celular , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología
7.
J Allergy Clin Immunol ; 146(3): 492-500, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32721416

RESUMEN

Since the first description of the administration of high doses of pooled serum IgG, also referred to as intravenous IgG (IVIg) therapy, as being able to ameliorate various autoimmune diseases, researchers have been investigating which molecular and cellular pathways underlie IVIg activity. Apart from trying to understand the obvious conundrum that IgG can trigger both autoimmune pathology and resolution of inflammation, the rapidly expanding use of IVIg has led to a lack of availability of this primary blood product, providing a strong rationale for developing recombinant alternatives. During the last decade, a tremendous number of novel insights into IVIg activity brought the goal of replacing IVIg within reach, at least in select indications, and has led to the initiation of several clinical trials. At the forefront of this effort is the modulation of autoantibody half-life and blocking access of autoantibodies to fragment cystallizable γ receptors (Fcγ receptors). In this rostrum article, we will briefly discuss current models of IVIg activity, followed by a more specific focus on novel therapeutic avenues that are entering the clinic and may replace IVIg in the future.


Asunto(s)
Enfermedades Autoinmunes/terapia , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas Intravenosas/uso terapéutico , Inflamación/terapia , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Animales , Autoanticuerpos/metabolismo , Autoinmunidad , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Terapia Molecular Dirigida , Receptores Fc/inmunología
8.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205578

RESUMEN

Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.


Asunto(s)
Inmunoglobulina G/metabolismo , Receptores de IgG/metabolismo , Resonancia por Plasmón de Superficie
9.
Eur J Immunol ; 49(7): 1117-1126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002172

RESUMEN

The first-in-human clinical trial of the CD28-specific monoclonal antibody (mAb) TGN1412 resulted in a life-threatening cytokine release syndrome. Although TGN1412 was designed as IgG4, known for weak Fc:Fcγ receptor (FcγR) interactions, these interactions contributed to TGN1412-induced T-cell activation. Using cell lines (TFs) expressing human FcγRI, -IIa, -IIb, or -III, we show that TGN1412 and TGN1412 as IgG1 and IgG2 are bound by FcγRs as it can be deduced from literature. However, upon coculture of TGN1412-decorated T cells with TFs or human primary blood cells, we observed that binding capacities by FcγRs do not correlate with the strength of the mediated effector function. FcγRIIa and FcγRIIb, showing no or very minor binding to TGN1412, mediated strongest T cell proliferation, while high-affinity FcγRI, exhibiting strong TGN1412 binding, mediated hardly any T-cell proliferation. These findings are of biological relevance because we show that FcγRI binds TGN1412, thus prevents binding to FcγRIIa or FcγRIIb, and consequently disables T-cell proliferation. In line with this, FcγRI- FcγRII+ but not FcγRI+ FcγRII+ monocytes mediate TGN1412-induced T-cell proliferation. Collectively, by using TGN1412 as example, our results indicate that binding of monomeric IgG subclasses does not predict the FcγR-mediated effector function, which has major implications for the design of therapeutic mAbs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Inmunoglobulina G/metabolismo , Inmunoterapia/efectos adversos , Monocitos/inmunología , Receptores de IgG/metabolismo , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD28/antagonistas & inhibidores , Línea Celular , Proliferación Celular , Síndrome de Liberación de Citoquinas/etiología , Humanos , Activación de Linfocitos , Ratones , Unión Proteica , Receptores de IgG/genética
10.
Immunol Rev ; 269(1): 194-211, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26683154

RESUMEN

Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Receptores de IgG/inmunología , Inmunidad Adaptativa , Animales , Autoinmunidad , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Inmunomodulación , Ratones , Polimorfismo Genético , Receptores de IgG/genética
11.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510106

RESUMEN

The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cryptococcus neoformans/citología , Inmunoglobulina G/efectos de los fármacos , Macrófagos/efectos de los fármacos , Metanfetamina/farmacología , Microglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Cultivadas , Humanos , Macrófagos/inmunología
12.
Cell Immunol ; 345: 103962, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31582169

RESUMEN

Previous in vivo studies established that inactivated Francisella tularensis immune complexes (mAb-iFt) are a more protective vaccine against lethal tularemia than iFt alone. Subsequent in vitro studies revealed enhanced DC maturation marker expression with mAb-iFt stimulation. The goal of this study was to determine the mechanism of enhanced DC maturation. Multiparameter analysis of surface marker expression and cytokine secretion demonstrates a requirement for FcγR signaling in enhanced DC maturation. MyD88 was also found to be essential for heightened DC maturation, implicating MyD88-dependent TLRs in DC maturation. Upon further study, we discovered that TLRs 2 & 4 drive cytokine secretion, but surprisingly TLR9 is required for DC maturation marker upregulation. These studies reveal a separation of DC cytokine and maturation marker induction pathways and demonstrate that FcγR-TLR/MyD88 synergy underlies the enhanced dendritic cell maturation in response to the mAb-iFt vaccine.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Receptores de IgG/inmunología , Receptor Toll-Like 9/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Vacunas Bacterianas/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Francisella tularensis/inmunología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de IgG/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Tularemia/inmunología , Tularemia/microbiología
13.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077656

RESUMEN

The ectodomain of matrix protein 2 is a universal influenza A virus vaccine candidate that provides protection through antibody-dependent effector mechanisms. Here we compared the functional engagement of Fcγ receptor (FcγR) family members by two M2e-specific monoclonal antibodies (MAbs), MAb 37 (IgG1) and MAb 65 (IgG2a), which recognize a similar epitope in M2e with similar affinities. The binding of MAb 65 to influenza A virus-infected cells triggered all three activating mouse Fcγ receptors in vitro, whereas MAb 37 activated only FcγRIII. The passive transfer of MAb 37 or MAb 65 in wild-type, Fcer1g-/-, Fcgr3-/-, and Fcgr1-/-Fcgr3-/- BALB/c mice revealed the importance of these receptors for protection against influenza A virus challenge, with a clear requirement of FcγRIII for IgG1 MAb 37 being found. We also report that FcγRIV contributes to protection by M2e-specific IgG2a antibodies.IMPORTANCE There is increased awareness that protection by antibodies directed against viral antigens is also mediated by the Fc domain of these antibodies. These Fc-mediated effector functions are often missed in clinical assays, which are used, for example, to define correlates of protection induced by vaccines. The use of antibodies to prevent and treat infectious diseases is on the rise and has proven to be a promising approach in our battle against newly emerging viral infections. It is now also realized that Fcγ receptors significantly enhance the in vivo protective effect of broadly neutralizing antibodies directed against the conserved parts of the influenza virus hemagglutinin. We show here that two M2e-specific monoclonal antibodies with close to identical antigen-binding specificities and affinities have a very different in vivo protective potential that is controlled by their capacity to interact with activating Fcγ receptors.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Receptores de IgG/fisiología , Inmunidad Adaptativa , Animales , Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos , Antivirales/farmacología , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicosilación , Células HEK293 , Humanos , Hibridomas , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Proteínas de la Matriz Viral/inmunología
14.
J Autoimmun ; 86: 104-115, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28964723

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG) is exposed on the outer surface of the myelin sheath, and as such, represents a possible target antigen for antibodies in multiple sclerosis (MS) and other demyelinating diseases. However, despite extensive analyses, whether MOG-specific antibodies contribute to pathogenesis in human MS remains an area of uncertainty. In the current study we demonstrate that antibodies derived from adult MS patients exacerbate experimental autoimmune encephalomyelitis (EAE) in 'humanized' mice that transgenically express human FcγRs (hFcγRs). Importantly, this exacerbation is dependent on MOG recognition by the human-derived antibodies. The use of mice that express hFcγRs has allowed us to also investigate the contribution of these receptors to disease in the absence of confounding effects of cross-species differences. Specifically, by engineering the Fc region of MOG-specific antibodies to modulate FcγR and complement (C1q) binding, we reveal that FcγRs but not complement activation contribute to EAE pathogenesis. Importantly, selective enhancement of the affinities of these antibodies for specific FcγRs reveals that FcγRIIA is more important than FcγRIIIA in mediating disease exacerbation. These studies not only provide definitive evidence for the contribution of MOG-specific antibodies to MS, but also reveal mechanistic insight that could lead to new therapeutic targets.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Autoanticuerpos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones SCID , Ratones Transgénicos , Vaina de Mielina/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo
15.
Biotechnol Bioeng ; 115(3): 565-576, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178403

RESUMEN

Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.


Asunto(s)
Interleucina-2 , Leucocitos Mononucleares/metabolismo , Nicotiana , Plantas Modificadas Genéticamente , Polisacáridos , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Humanos , Interleucina-2/biosíntesis , Interleucina-2/química , Interleucina-2/genética , Interleucina-2/farmacología , Leucocitos Mononucleares/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/genética , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/farmacología , Nicotiana/genética , Nicotiana/metabolismo
16.
Int J Immunogenet ; 45(1): 22-25, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29227030

RESUMEN

The FCGR locus is characterized by high polymorphism and sequence homology. In particular, the Ile232Thr polymorphism in the FCGR2B gene results in inaccurate genotyping in most published papers. The purpose of the study was to develop an accurate genotyping assay able to discriminate this polymorphism.


Asunto(s)
Técnicas de Genotipaje/métodos , Polimorfismo Genético , Receptores de IgG/genética , Femenino , Humanos , Masculino
17.
Hum Mutat ; 38(4): 390-399, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27995740

RESUMEN

Fcγ receptors are a family of cell-surface receptors that are expressed by a host of different innate and adaptive immune cells, and mediate inflammatory responses by binding the Fc portion of immunoglobulin G. In humans, five low-affinity receptors are encoded by the genes FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B, which are located in an 82.5-kb segmental tandem duplication on chromosome 1q23.3, which shows extensive copy-number variation (CNV). Deletions of FCGR3B have been suggested to increase the risk of inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis (RA). In this study, we identify the deletion breakpoints of FCGR3B deletion alleles in the UK population and endogamous native American population, and show that some but not all alleles are likely to be identical-by-descent. We also localize a duplication breakpoint, confirming that the mechanism of CNV generation is nonallelic homologous recombination, and identify several alleles with gene conversion events using fosmid sequencing data. We use information on the structure of the deletion alleles to distinguish FCGR3B deletions from FCGR3A deletions in whole-genome array comparative genomic hybridization (aCGH) data. Reanalysis of published aCGH data using this approach supports association of FCGR3B deletion with increased risk of RA in a large cohort of 1,982 cases and 3,271 controls (odds ratio 1.61, P = 2.9×10-3 ).


Asunto(s)
Artritis Reumatoide/genética , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad/genética , Receptores de IgG/genética , Eliminación de Secuencia , Alelos , Artritis Reumatoide/metabolismo , Estudios de Cohortes , Hibridación Genómica Comparativa/métodos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Haplotipos , Recombinación Homóloga , Humanos , Polimorfismo de Nucleótido Simple , Receptores de IgG/metabolismo , Factores de Riesgo
18.
Biochem Biophys Res Commun ; 485(1): 189-194, 2017 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-28196745

RESUMEN

Therapeutic monoclonal antibodies (mAbs) have important roles in treatments for various cancers and inflammatory diseases. Their highly target specificities provide controlled safety profiles. However, therapeutic mAbs commonly pose a risk of the induction of the release of cytokines, which may result in adverse events including infusion reaction and cytokine release syndrome. Several mechanisms are involved in the cytokine releases induced by therapeutic mAbs, and the activation of immune effector cells via Fcγ receptors (FcγRs) is one of the putative mechanisms for most IgG-subclass mAbs. The relationship between cytokine releases and mAbs' Fc functions is not fully understood. Here we developed a simple reporter cell-based assay for estimating the FcγR-mediated activation of human immune effector cells by mAbs. Our use of the cell-based assay to compare Fc-engineered mAbs with different FcγR-activation profiles revealed that the releases of inflammatory cytokines and chemokines from human peripheral blood mononuclear cells (hPBMCs) induced by the mAbs were elevated by treatment with Fc-engineered mAbs with higher FcγR-activation properties. Our results also suggested the involvement of monocytic effector cells in the activation of hPBMCs as sources of released cytokines and chemokines, which may lead to the immune cell-mediated adverse events. Our new reporter cell assay is a promising tool for evaluating and predicting the activation of human immune cells by novel Fc-engineered mAbs.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunidad Celular , Receptores de IgG/inmunología , Línea Celular , Citocinas/inmunología , Humanos , Leucocitos Mononucleares/inmunología
19.
Cent Eur J Immunol ; 42(4): 363-369, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29472814

RESUMEN

INTRODUCTION: Fc gamma receptor (FcγR) IIa is considered the most widely distributed of the three classes of Fc receptors, and it expresses an allelic polymorphism. This type of polymorphism may modify the immune response and may be an important factor for some diseases. The aim of the study reported herein was to evaluate the association between the FcγRIIa polymorphism and susceptibility to both end-stage renal disease (ESRD) and acute kidney graft rejection (AR) in children who have undergone renal transplantation. MATERIAL AND METHODS: The study evaluated 70 children who had undergone transplantation and 60 healthy subjects. AR was observed in 25 children. RESULTS: FcγRIIa genotypes and alleles were significantly different between transplantation patients and the control group. The assessment for FcγR of the groups in which AR was present showed that there was only a risk of having an acute rejection in homozygous genotype RR. CONCLUSIONS: FcγRIIa RR genotype and allele frequency was increased in paediatric renal transplant recipients. The present findings showed that FcγRIIa genotype may be related to ESRD disease susceptibility, and FcγRIIa polymorphisms seemed to affect AR.

20.
Immunology ; 147(1): 55-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26451966

RESUMEN

Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.


Asunto(s)
Células Dendríticas/metabolismo , Pulmón/metabolismo , Activación de Linfocitos , Receptores de IgG/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Antivirales/farmacología , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Palivizumab/farmacología , Receptores de IgG/deficiencia , Receptores de IgG/genética , Receptores de IgG/inmunología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/inmunología , Transducción de Señal , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Carga Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA