Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 31: 101325, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35990579

RESUMEN

ß-Carotene is converted into vitamin A in the body and can remove reactive oxygen species. However, it is still unclear whether ß-carotene alters the expression levels of inflammation-related genes in macrophages and how this is regulated. In the present study, we investigated whether the administration of ß-carotene under hyperglycemic conditions altered the expression level of inflammation-related genes and whether any observed differences were associated with changes in histone modifications in juvenile macrophage-like THP-1 cells. THP-1 cells (from a human monocytic leukemia cell line) were cultured in low glucose (5 mM), high glucose (25 mM), or high glucose (25 mM) + ß-carotene (5 µM) media for 1 day, and mRNA expression levels of genes related to oxidative stress and inflammation, and histone modifications were determined by mRNA microarray and qRT-PCR analyses, and chromatin immunoprecipitation assays, respectively. The expression of inflammation-related genes, such as IL31RA, CD38, and NCF1B, and inflammation-associated signaling pathway genes, such as ITGAL, PRAM1, and CSF3R, were upregulated by ß-carotene under high-glucose conditions. Under these conditions, histone H3 lysine 4 (K4) demethylation, H3K36 trimethylation, and H3K9 acetylation around the CD38, NCF1B, and ITGAL genes were higher in ß-carotene-treated cells than in untreated cells. Treatment of juvenile macrophage-like THP-1 cells with ß-carotene under these high glucose conditions induced the expression of inflammation-related genes, K9 acetylation, and K4 di- and K36 trimethylation of histone H3 around these genes.

2.
JID Innov ; 2(5): 100138, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36017415

RESUMEN

Diabetic wounds exhibit chronic inflammation and delayed tissue proliferation or remodeling, mainly owing to prolonged proinflammatory (M1) macrophage activity and defects in transition to prohealing/proremodeling (M2a/M2c; CD206+ and/or CD163+) macrophages. We found that topical treatment with ON101, a plant-based potential therapeutic for diabetic foot ulcers, increased M2c-like (CD163+ and CD206+) cells and suppressed M1-like cells, altering the inflammatory gene profile in a diabetic mouse model compared with that in the controls. An in vitro macrophage-polarizing model revealed that ON101 directly suppressed CD80+ and CD86+ M1-macrophage polarization and M1-associated proinflammatory cytokines at both protein and transcriptional levels. Notably, conditioned medium collected from ON101-treated M1 macrophages reversed the M1-conditioned medium‒mediated suppression of CD206+ macrophages. Furthermore, conditioned medium from ON101-treated adipocyte progenitor cells significantly promoted CD206+ and CD163+ macrophages but strongly inhibited M1-like cells. ON101 treatment also stimulated the expression of GCSF and CXCL3 genes in human adipocyte progenitor cells. Interestingly, treatment with recombinant GCSF protein enhanced both CD206+ and CD163+ M2 markers, whereas CXCL3 treatment only stimulated CD163+ M2 macrophages. Depletion of cutaneous M2 macrophages inhibited ON101-induced diabetic wound healing. Thus, ON101 directly suppressed M1 macrophages and facilitated the GCSF- and CXCL3-mediated transition from M1 to M2 macrophages, lowering inflammation and leading to faster diabetic wound healing.

3.
Bone Rep ; 17: 101622, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36187598

RESUMEN

Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally.

4.
J Adv Res ; 34: 43-63, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35024180

RESUMEN

Introduction: Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives: This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods: A literature search was carried out regarding our topic with the keywords of "atherosclerosis" or "Nrf2/HO-1" or "vascular endothelial cells" or "oxidative stress" or "Herbal medicine" or "natural products" or "natural extracts" or "natural compounds" or "traditional Chinese medicines" based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results: These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion: Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.


Asunto(s)
Aterosclerosis , Preparaciones Farmacéuticas , Aterosclerosis/tratamiento farmacológico , Células Endoteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Medicina de Hierbas , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
5.
Mol Metab ; 6(7): 760-769, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28702331

RESUMEN

OBJECTIVE: Upregulation of uncoupling protein 2 (UCP2) is associated with impaired glucose-stimulated insulin secretion (GSIS), which is thought to be an important contributor to pathological ß cell failure in obesity and type 2 diabetes (T2D); however, the physiological function of UCP2 in the ß cell remains undefined. It has been suggested, but not yet tested, that UCP2 plays a physiological role in ß cells by coordinating insulin secretion capacity with anticipated fluctuating nutrient supply, such that upregulation of UCP2 in the inactive/fasted state inhibits GSIS as a mechanism to prevent hypoglycemia. Therefore, we hypothesized that daily cycles of GSIS capacity are dependent on rhythmic and predictable patterns of Ucp2 gene expression such that low Ucp2 in the active/fed phase promotes maximal GSIS capacity, whereas elevated Ucp2 expression in the inactive/fasted phase supresses GSIS capacity. We further hypothesized that rhythmic Ucp2 expression is required for the maintenance of glucose tolerance over the 24 h cycle. METHODS: We used synchronized MIN6 clonal ß cells and isolated mouse islets from wild type (C57BL6) and mice with ß cell knockout of Ucp2 (Ucp2-ßKO; and respective Ins2-cre controls) to determine the endogenous expression pattern of Ucp2 over 24 h and its impact on GSIS capacity and glucose tolerance over 24 h. RESULTS: A dynamic pattern of Ucp2 mRNA expression was observed in synchronized MIN6 cells, which showed a reciprocal relationship with GSIS capacity in a time-of-day-specific manner. GSIS capacity was suppressed in islets isolated from wild type and control mice during the light/inactive phase of the daily cycle; a suppression that was dependent on Ucp2 in the ß cell and was lost in islets isolated from Ucp2-ßKO mice or wild type islets treated with a UCP2 inhibitor. Finally, suppression of GSIS capacity by UCP2 in the light phase was required for the maintenance of normal patterns of glucose tolerance. CONCLUSIONS: Our study suggests that Ucp2/UCP2 in the ß cell is part of an important, endogenous, metabolic regulator that controls the temporal capacity of GSIS over the course of the day/night cycle, which, in turn, regulates time-of-day glucose tolerance. Targeting Ucp2/UCP2 as a therapeutic in type 2 diabetes or any other metabolic condition must take into account the rhythmic nature of its expression and its impact on glucose tolerance over 24 h, specifically during the inactive/fasted phase.


Asunto(s)
Ritmo Circadiano , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , Línea Celular , Células Cultivadas , Exocitosis , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Desacopladora 2/genética
6.
J Clin Exp Hepatol ; 5(3): 183-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26628835

RESUMEN

INTRODUCTION: Hepatocellular Carcinoma (HCC) is one of most lethal cancers worldwide. The prognosis is very poor and therapeutic options are limited. The aim of this study was to determine the correlation of the [(18)F]FDG uptake profile of three HCC cell lines with p53 and glucose transporters (GLUTs) 1, 2, 3, 5 and 12 expression and with the glucose level present in the cell culture medium. METHODS: Cell lines used are HepG2 (wp53), HuH7 (overexpress p53) and Hep3B2.1-7 (p53null). An immunocytochemical analysis was performed to evaluate p53 expression. Through uptake studies were analyzed the [(18)F]FDG uptake profiles of all cell lines under study. The expression of GLUTs were quantified by flow cytometry. The [(18)F]FDG uptake studies GLUTs expression analysis were performed on cells that grew in a high and low glucose medium in order to determine the effect of glucose concentration on GLUTs expression and on [(18)F]FDG uptake. RESULTS: Immunocytochemical analysis confirmed the p53 expression profiles of all cell lines. It was found out that for all cell lines, [(18)F]FDG uptake is higher when cells grow in low glucose medium, however, the glucose level doesn't affect mostly the GLUTs expression. The Hep3B2.1-7 (p53null) is always the one that have higher [(18)F]FDG uptake. It was found that not always GLUT1 and GLUT3 are the most expressed by these cell lines. CONCLUSIONS: Our results shown that the p53 expression influences [(18)F]FDG uptake. This suggests that [(18)F]FDG may be used in HCC diagnosis, and may even provide some information about the genetic profile of the tumor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA