Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biochem ; 174(2): 131-142, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37039781

RESUMEN

The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) system plays a central role in redox homeostasis and inflammation control. Oxidative stress or electrophilic compounds promote NRF2 stabilization and transcriptional activity by negatively regulating its inhibitor, KEAP1. We have previously reported that bromovalerylurea (BU), originally developed as a hypnotic, exerts anti-inflammatory effects in various inflammatory disease models. However, the molecular mechanism underlying its effect remains uncertain. Herein, we found that by real-time multicolor luciferase assay using stable luciferase red3 (SLR3) and green-emitting emerald luciferase (ELuc), BU potentiates NRF2-dependent transcription in the human hepatoblastoma cell line HepG2 cells, which lasted for more than 60 h. Further analysis revealed that BU promotes NRF2 accumulation and the transcription of its downstream cytoprotective genes in the HepG2 and the murine microglial cell line BV2. Keap1 knockdown did not further enhance NRF2 activity, suggesting that BU upregulates NRF2 by targeting KEAP1. Knockdown of Nfe2l2 in BV2 cells diminished the suppressive effects of BU on the production of pro-inflammatory mediators, like nitric oxide (NO) and its synthase NOS2, indicating the involvement of NRF2 in the anti-inflammatory effects of BU. These data collectively suggest that BU could be repurposed as a novel NRF2 activator to control inflammation and oxidative stress.


Asunto(s)
Bromisovalum , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Bromisovalum/farmacología , Hipnóticos y Sedantes/farmacología , Estrés Oxidativo , Oxidación-Reducción , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
2.
J Biochem ; 174(3): 239-252, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37094356

RESUMEN

Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.


Asunto(s)
Ferroptosis , Fibroblastos , Animales , Humanos , Ratones , Fibroblastos/metabolismo , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Hierro/metabolismo , Glutatión/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
3.
Comput Struct Biotechnol J ; 20: 766-778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126886

RESUMEN

The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.

4.
Mol Genet Metab Rep ; 29: 100818, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900592

RESUMEN

Regulation of 5-aminolevulinate synthase 1 (ALAS1) for nonerythroid heme is critical for respiration, cell signaling mechanisms and steroid/drug metabolism. ALAS1 is induced in some genetic disorders but unlike other genes in the heme pathway, a gene variant of ALAS1 associated with inherited disease has not been reported. BALB/c mice carrying a null ALAS1 allele caused by a ßGEO insert were developed and used to determine the consequences of heme demand of a semi gene copy number. Homozygous disruption of ALAS1 (-/-) was lethal for embryo development post day 6.5 but expression in heterozygotes (+/-) was sufficient for the number of offspring and survival. In both wild type (WT +/+) and +/- mice expression of ALAS1 RNA was greatest in liver and harderian gland and much lower in kidney, lung, heart, brain and spleen. The effects of one WT ALAS1 allele in +/- mice on mRNA levels in liver and harderian gland were less marked compared to brain and other organs that were examined. Many other genes were up-regulated by heterozygosity in liver and brain but to a minimal extent. Hepatic heme oxygenase 1 (HMOX1) mRNA expression was significantly lower in +/- mice but not in brain. No elevated translation of WT allele ALAS1 mRNA was detected in +/- liver as a compensatory mechanism for the disabled allele. Fasting induced ALAS1 mRNA in both WT and +/- mice but only in +/- was this manifest as increased ALAS1 protein. The hepatic protoporphyria-inducing drug 4-ethyl-DDC caused induction of hepatic ALAS1 mRNA and protein levels in both WT and +/- mice but markedly less in the mice with only one intact allele. The findings illustrate the complex response of ALAS1 expression for heme demand but limited evidence that upregulation of a wild type allele can compensate for a null allele.

5.
Toxicol Rep ; 8: 1917-1929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926170

RESUMEN

Communities in the western region of the United States experience environmental exposure to metal mixtures from living in proximity to numerous unremediated abandoned uranium mines. Metals including arsenic and uranium co-occur in and around these sites at levels higher than the United States Environmental Protection Agency maximum contaminant levels. To address the potential effect of these metals on the activation of CD4+ T-cells, we used RNA sequencing methods to determine the effect of exposure to sodium arsenite (1 µM and 10 µM), uranyl acetate (3 µM and 30 µM) or a mixture of sodium arsenite and uranyl acetate (1 µM sodium arsenite + 3 µM uranyl acetate). Sodium arsenite induced a dose dependent effect on activation associated gene expression; targeting immune response genes at the lower dose. Increases in oxidative stress gene expression were observed with both sodium arsenite doses. While uranyl acetate alone did not significantly alter activation associated gene expression, the mixture of uranyl acetate with sodium arsenite demonstrated a combined effect relative to sodium arsenite alone. The results demonstrate the need to investigate metal and metalloid mixtures at environmentally relevant concentrations to better understand the toxicological impact of these mixtures on T-cell activation, function and immune dysregulation.

6.
Toxicol Rep ; 6: 186-192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899675

RESUMEN

Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory molecules play a key role in the development of human diseases and are used often today for researching new treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epigenetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells using fluorescence.

7.
Data Brief ; 21: 934-942, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30426047

RESUMEN

This article describes the effect of the oxidative stress inducers Angiotensin II and 6-hydroxydopamine (6-OHDA) on different cell lines. The levels of expression Angiotensin type 1 and type 2 receptors in different dopaminergic cell lines are shown. The data indicate that treatment with Angiotensin II and 6-OHDA increases the production of reactive oxygen species (ROS) and decreases cell viability. NRF2 is a transcription factor induced by ROS. We provide data that NRF2 overexpression increases cell viability in response to oxidative stress inducers compared to control cells, and that these inducers can, both separately and in combination, enhance the expression of NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Interpretation of these data and additional information is presented in the research article "Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells" (Parga et al., 2018) [1].

8.
Cell Mol Gastroenterol Hepatol ; 5(3): 367-398, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29552625

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

9.
Redox Biol ; 2: 284-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24494203

RESUMEN

Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Cetonas/administración & dosificación , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fenobarbital/administración & dosificación , Esteroide Hidroxilasas/genética , Animales , Familia 2 del Citocromo P450 , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Cetonas/farmacología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Fenobarbital/farmacología , Transducción de Señal/efectos de los fármacos
10.
Cell Cycle ; 13(18): 2913-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486479

RESUMEN

Fragile histidine triad (FHIT) gene deletions are among the earliest and most frequent events in carcinogenesis, particularly in carcinogen-exposed tissues. Though FHIT has been established as an authentic tumor suppressor, the mechanism underlying tumor suppression remains opaque. Most experiments designed to clarify FHIT function have analyzed the consequence of re-expressing FHIT in FHIT-negative cells. However, carcinogenesis occurs in cells that transition from FHIT-positive to FHIT-negative. To better understand cancer development, we induced FHIT loss in human bronchial epithelial cells with RNA interference. Because FHIT is a demonstrated target of carcinogens in cigarette smoke, we combined FHIT silencing with cigarette smoke extract (CSE) exposure and measured gene expression consequences by RNA microarray. The data indicate that FHIT loss enhances the expression of a set of oxidative stress response genes after exposure to CSE, including the cytoprotective enzyme heme oxygenase 1 (HMOX1) at the RNA and protein levels. Data are consistent with a mechanism in which Fhit protein is required for accumulation of the transcriptional repressor of HMOX1, Bach1 protein. We posit that by allowing superinduction of oxidative stress response genes, loss of FHIT creates a survival advantage that promotes carcinogenesis.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Fumar/efectos adversos , Ácido Anhídrido Hidrolasas/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Calcio/metabolismo , Bovinos , Quelantes/farmacología , Inducción Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Telomerasa/metabolismo
11.
Redox Biol ; 1: 532-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24273736

RESUMEN

Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection.


Asunto(s)
Abietanos/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Protectores Solares/farmacología , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ubiquitinación/efectos de los fármacos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA