Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Bacteriol ; 206(7): e0007424, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-38856219

RESUMEN

The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs. IMPORTANCE: Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.


Asunto(s)
Bacterias , Elementos Transponibles de ADN , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , ARN Ribosómico 16S/genética , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo
2.
Microbiology (Reading) ; 168(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36156193

RESUMEN

High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Bacteriófagos/genética , Endonucleasas , Genoma Viral , Genómica/métodos , Especificidad del Huésped , Aguas del Alcantarillado , Agua
3.
Bull Entomol Res ; 112(6): 724-733, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36043456

RESUMEN

Population suppression is an effective way for controlling insect pests and disease vectors, which cause significant damage to crop and spread contagious diseases to plants, animals and humans. Gene drive systems provide innovative opportunities for the insect pests population suppression by driving genes that impart fitness costs on populations of pests or disease vectors. Different gene-drive systems have been developed in insects and applied for their population suppression. Here, different categories of gene drives such as meiotic drive (MD), under-dominance (UD), homing endonuclease-based gene drive (HEGD) and especially the CRISPR/Cas9-based gene drive (CCGD) were reviewed, including the history, types, process and mechanisms. Furthermore, the advantages and limitations of applying different gene-drive systems to suppress the insect population were also summarized. This review provides a foundation for developing a specific gene-drive system for insect population suppression.


Asunto(s)
Tecnología de Genética Dirigida , Humanos , Animales , Sistemas CRISPR-Cas , Insectos/genética , Vectores de Enfermedades
4.
J Theor Biol ; 528: 110831, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34274311

RESUMEN

The mutagenic chain reaction (MCR) is a genetic tool to use a CRISPR-Cas construct to introduce a homing endonuclease, allowing gene drive to influence whole populations in a minimal number of generations (Esvelt et al., 2014; Gantz and Bier, 2015; Gantz and Bier, 2016). The question arises: if an active genetic terror event is released into a population, could we prevent the total spread of the undesired allele (Gantz, et al., 2015; Webber et al., 2015)? Thus far, effective protection methods require knowledge of the terror locus (Grunwald et al., 2019). Here we introduce a novel approach, an autocatalytic-Protection for an Unknown Locus (a-PUL), whose aim is to spread through a population and arrest and decrease an active terror event's spread without any prior knowledge of the terror-modified locus, thus allowing later natural selection and ERACR drives to restore the normal locus (Hammond et al., 2017). a-PUL, using a mutagenic chain reaction, includes (i) a segment encoding a non-Cas9 endonuclease capable of homology-directed repair suggested as Type II endonuclease Cpf1 (Cas12a), (ii) a ubiquitously-expressed gene encoding a gRNA (gRNA1) with a U4AU4 3'-overhang specific to Cpf1 and with crRNA specific to some desired genomic sequence of non-coding DNA, (iii) a ubiquitously-expressed gene encoding two gRNAs (gRNA2/gRNA3) both with tracrRNA specific to Cas9 and crRNA specific to two distinct sites of the Cas9 locus, and (iv) homology arms flanking the Cpf1/gRNA1/gRNA2/gRNA3 cassette that are identical to the region surrounding the target cut directed by gRNA1 (Khan, 2016; Zetsche et al., 2015). We demonstrate the proof-of-concept and efficacy of our protection construct through a Graphical Markov model and computer simulation.


Asunto(s)
Sistemas CRISPR-Cas , Mutágenos , Sistemas CRISPR-Cas/genética , Simulación por Computador , Genoma , Mutagénesis
5.
Proc Natl Acad Sci U S A ; 115(24): 6189-6194, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844184

RESUMEN

The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect. To evaluate the molecular details of such a sex conversion-based suppression gene drive experimentally, we implemented this strategy in Drosophila melanogaster to serve as a safe model organism. We generated a Cas9-based homing gene-drive element targeting the transformer gene and showed its high efficiency for sex conversion from females to males. However, nonhomologous end joining increased the rate of mutagenesis at the target site, which resulted in the emergence of drive-resistant alleles and therefore curbed the gene drive. This confirms previous studies that simple homing CRISPR/Cas9 gene-drive designs will be ineffective. Nevertheless, by performing population dynamics simulations using the parameters we obtained in D. melanogaster and by adjusting the model for the agricultural pest Ceratitis capitata, we were able to identify adequate modifications that could be successfully applied for the management of wild Mediterranean fruit fly populations using our proposed sex conversion-based suppression gene-drive strategy.


Asunto(s)
Sistemas CRISPR-Cas/genética , Evolución Molecular , Genes de Insecto/genética , Control Biológico de Vectores/métodos , Procesos de Determinación del Sexo/genética , Animales , Ceratitis capitata/genética , Drosophila melanogaster/genética , Femenino , Edición Génica , Masculino , Modelos Genéticos
6.
BMC Genomics ; 21(1): 358, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32397981

RESUMEN

BACKGROUND: Increased contamination of European and Asian wheat and barley crops with "emerging" mycotoxins such as enniatins or beauvericin, produced by Fusarium avenaceum and Fusarium tricinctum, suggest that these phylogenetically close species could be involved in future food-safety crises. RESULTS: The mitochondrial genomes of F. tricinctum strain INRA104 and F. avenaceum strain FaLH27 have been annotated. A comparative analysis was carried out then extended to a set of 25 wild strains. Results show that they constitute two distinct species, easily distinguished by their mitochondrial sequences. The mitochondrial genetic variability is mainly located within the intergenic regions. Marks of variations show they have evolved (i) by Single Nucleotide Polymorphisms (SNPs), (ii) by length variations mediated by insertion/deletion sequences (Indels), and (iii) by length mutations generated by DNA sliding events occurring in mononucleotide (A)n or (T)n microsatellite type sequences arranged in a peculiar palindromic organization. The optionality of these palindromes between both species argues for their mobility. The presence of Indels and SNPs in palindrome neighbouring regions suggests their involvement in these observed variations. Moreover, the intraspecific and interspecific variations in the presence/absence of group I introns suggest a high mobility, resulting from several events of gain and loss during short evolution periods. Phylogenetic analyses of intron orthologous sequences suggest that most introns could have originated from lateral transfers from phylogenetically close or distant species belonging to various Ascomycota genera and even to the Basidiomycota fungal division. CONCLUSIONS: Mitochondrial genome evolution between F. tricinctum and F. avenaceum is mostly driven by two types of mobile genetic elements, implicated in genome polymorphism. The first one is represented by group I introns. Indeed, both genomes harbour optional (inter- or intra-specifically) group I introns, all carrying putatively functional hegs, arguing for a high mobility of these introns during short evolution periods. The gain events were shown to involve, for most of them, lateral transfers between phylogenetically distant species. This study has also revealed a new type of mobile genetic element constituted by a palindromic arrangement of (A) n and (T) n microsatellite sequences whose presence was related to occurrence of SNPs and Indels in the neighbouring regions.


Asunto(s)
Evolución Molecular , Fusarium/genética , Genoma Mitocondrial , Repeticiones de Microsatélite/genética , Teorema de Bayes , Hibridación Genómica Comparativa , Proteínas Fúngicas/genética , Fusarium/clasificación , Intrones , Filogenia , Polimorfismo de Nucleótido Simple
7.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824412

RESUMEN

Reduced NME1 expression in melanoma cell lines, mouse models of melanoma, and melanoma specimens in human patients is associated with increased metastatic activity. Herein, we investigate the role of NME1 in repair of double-stranded breaks (DSBs) and choice of double-strand break repair (DSBR) pathways in melanoma cells. Using chromatin immunoprecipitation, NME1 was shown to be recruited rapidly and directly to DSBs generated by the homing endonuclease I-PpoI. NME1 was recruited to DSBs within 30 min, in concert with recruitment of ataxia-telangiectasia mutated (ATM) protein, an early step in DSBR complex formation, as well as loss of histone 2B. NME1 was detected up to 5 kb from the break site after DSB induction, suggesting a role in extending chromatin reorganization away from the repair site. shRNA-mediated silencing of NME1 expression led to increases in the homologous recombination (HR) and non-homologous end-joining (NHEJ) pathways of double-strand break repair (DSBR), and reduction in the low fidelity, alternative-NHEJ (A-NHEJ) pathway. These findings suggest low expression of NME1 drives DSBR towards higher fidelity pathways, conferring enhanced genomic stability necessary for rapid and error-free proliferation in invasive and metastatic cells. The novel mechanism highlighted in the current study appears likely to impact metastatic potential and therapy-resistance in advanced melanoma and other cancers.


Asunto(s)
Melanoma/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Endodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Histonas/metabolismo , Humanos , Nucleósido Difosfato Quinasas NM23/genética
8.
BMC Genomics ; 20(1): 850, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722669

RESUMEN

BACKGROUND: The MinION Access Program (MAP, 2014-2016) allowed selected users to test the prospects of long nanopore reads for diverse organisms and applications through the rapid development of improving chemistries. In 2014, faced with a fragmented Illumina assembly for the chloroplast genome of the green algal holobiont Caulerpa ashmeadii, we applied to the MAP to test the prospects of nanopore reads to investigate such intricacies, as well as further explore the hologenome of this species with native and hybrid approaches. RESULTS: The chloroplast genome could only be resolved as a circular molecule in nanopore assemblies, which also revealed structural variants (i.e. chloroplast polymorphism or heteroplasmy). Signal and Illumina polishing of nanopore-assembled organelle genomes (chloroplast and mitochondrion) reflected the importance of coverage on final quality and current limitations. In hybrid assembly, our modest nanopore data sets showed encouraging results to improve assembly length, contiguity, repeat content, and binning of the larger nuclear and bacterial genomes. Profiling of the holobiont with nanopore or Illumina data unveiled a dominant Rhodospirillaceae (Alphaproteobacteria) species among six putative endosymbionts. While very fragmented, the cumulative hybrid assembly length of C. ashmeadii's nuclear genome reached 24.4 Mbp, including 2.1 Mbp in repeat, ranging closely with GenomeScope's estimate (> 26.3 Mbp, including 4.8 Mbp in repeat). CONCLUSION: Our findings relying on a very modest number of nanopore R9 reads as compared to current output with newer chemistries demonstrate the promising prospects of the technology for the assembly and profiling of an algal hologenome and resolution of structural variation. The discovery of polymorphic 'chlorotypes' in C. ashmeadii, most likely mediated by homing endonucleases and/or retrohoming by reverse transcriptases, represents the first report of chloroplast heteroplasmy in the siphonous green algae. Improving contiguity of C. ashmeadii's nuclear and bacterial genomes will require deeper nanopore sequencing to greatly increase the coverage of these larger genomic compartments.


Asunto(s)
Caulerpa/genética , Genoma del Cloroplasto , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Genoma Bacteriano , Genoma Mitocondrial , Genómica/métodos , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
9.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30844063

RESUMEN

Being invited by a prestigious journal to write the retrospective of one's life is first a great honor, and then a chore when starting to do it. These feelings did not spare me. But trying to recall my past to the best of my memory, I learned how lucky I was to have been born to a generation that witnessed so many scientific discoveries. There is little in common between the genetic courses I taught recently and those that I received more than 50 years ago. Thinking that a tiny bit of this fantastic evolution might come from my accidental encountering with yeasts is a stunning experience. I wish the same for the new generation.


Asunto(s)
Genómica/historia , Biología Molecular/historia , Levaduras/genética , Historia del Siglo XX , Historia del Siglo XXI , Recombinación Genética , Investigación
10.
Extremophiles ; 23(6): 669-679, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31363851

RESUMEN

Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.


Asunto(s)
Proteínas Arqueales/química , Endonucleasas/química , Inteínas , Pyrococcus abyssi/enzimología , Pyrococcus horikoshii/enzimología , Proteínas Arqueales/genética , Endonucleasas/genética , Estabilidad de Enzimas , Calor , Dominios Proteicos , Pyrococcus abyssi/genética , Pyrococcus horikoshii/genética
11.
Bioessays ; 39(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28863233

RESUMEN

Gene drives are selfish genetic elements that use a variety of mechanisms to ensure they are transmitted to subsequent generations at greater than expected frequencies. Synthetic gene drives based on the clustered regularly interspersed palindromic repeats (CRISPR) genome editing system have been proposed as a way to alter the genetic characteristics of natural populations of organisms relevant to the goals of public health, conservation, and agriculture. Here, we review the principles and potential applications of CRISPR drives, as well as means proposed to prevent their uncontrolled spread. We also focus on recent work suggesting that factors such as natural genetic variation and inbreeding may represent substantial impediments to the propagation of CRISPR drives.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Endonucleasas/metabolismo , Ingeniería Genética/métodos , Terapia Genética
12.
Proc Natl Acad Sci U S A ; 113(52): 14988-14993, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956611

RESUMEN

The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.


Asunto(s)
Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Eliminación de Gen , Edición Génica , Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Endopeptidasa K/química , Escherichia coli , Genoma , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia
13.
Proc Natl Acad Sci U S A ; 113(32): E4654-61, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27462108

RESUMEN

Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel's Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.


Asunto(s)
Haloferax volcanii/genética , Inteínas/fisiología , Recombinación Genética , Fusión Celular , ADN Polimerasa beta/fisiología
14.
J Phycol ; 54(1): 66-78, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29057470

RESUMEN

The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free-living Trebouxiophyceae compared to free-living non-Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non-Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free-living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free-living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms.


Asunto(s)
Chlorophyta/genética , Cloroplastos/genética , Intrones , Líquenes/genética , ADN de Algas/análisis , ADN Ribosómico/análisis , Filogenia , ARN Ribosómico 23S/análisis , Análisis de Secuencia de ADN
15.
Appl Microbiol Biotechnol ; 102(22): 9433-9448, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30209549

RESUMEN

Mitochondria are the powerhouses of eukaryotic cells, responsible for ATP generation and playing a role in a diversity of cellular and organismal functions. Different from the majority of other intracellular membrane structures, mitochondria contain their own genetic materials that are capable of independent replication and inheritance. In this mini-review, we provide brief summaries of fungal mitochondrial genome structure, size, gene content, inheritance, and genetic variation. We pay special attention to the relative genetic polymorphisms of the mitochondrial vs nuclear genomes at the population level within individual fungal species. Among the 20 species/groups of species reviewed here, there is a range of variation among genes and species in the relative nuclear and mitochondrial genetic polymorphisms. Interestingly, most (15/20) showed a greater genetic diversity for nuclear genes and genomes than for mitochondrial genes and genomes, with the remaining five showing similar or slower nuclear genome genetic variations. This fungal pattern is different from the dominant pattern in animals, but more similar to that in plants. At present, the mechanisms for the variations among fungal species and the overall low level of mitochondrial sequence polymorphisms are not known. The increasing availability of population genomic data should help us reveal the potential genetic and ecological factors responsible for the observed variations.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Genoma Mitocondrial , Mitocondrias/genética , Polimorfismo Genético , ADN Mitocondrial/genética , Genes Mitocondriales , Intrones , Filogenia
16.
BMC Evol Biol ; 17(1): 82, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28320321

RESUMEN

BACKGROUND: Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS: For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION: This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.


Asunto(s)
Código de Barras del ADN Taxonómico , Intrones , Poríferos/genética , Animales , Secuencia de Bases , Evolución Biológica , Endonucleasas/genética , Mitocondrias/genética , Sistemas de Lectura Abierta , Filogenia , Poríferos/clasificación , Empalme del ARN
17.
Int J Mol Sci ; 17(7)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27376282

RESUMEN

Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification.


Asunto(s)
Genoma Mitocondrial , Hypocreales/genética , Intrones , Mitocondrias/genética , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Filogenia , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
18.
New Phytol ; 208(2): 570-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25989702

RESUMEN

The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genes de Plantas , Genoma Mitocondrial , Genoma de Planta , Geranium/genética , Espacio Intracelular/genética , Secuencia de Bases , ADN Mitocondrial/genética , ADN de Plantas/genética , Complejo IV de Transporte de Electrones/genética , Conversión Génica , Intrones/genética , Datos de Secuencia Molecular , Filogenia , Factores de Tiempo
19.
Plant J ; 76(5): 888-99, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112765

RESUMEN

The I-CreI homing endonuclease from Chlamydomonas reinhardti has been used as a molecular tool for creating DNA double-strand breaks and enhancing DNA recombination reactions in maize cells. The DNA-binding properties of this protein were re-designed to recognize a 22 bp target sequence in the 5th exon of MS26, a maize fertility gene. Three versions of a single-chain endonuclease, called Ems26, Ems26+ and Ems26++, cleaved their intended DNA site within the context of a reporter assay in a mammalian cell line. When the Ems26++ version was delivered to maize Black Mexican Sweet cells by Agrobacterium-mediated transformation, the cleavage resulted in mutations at a co-delivered extra-chromosomal ms26-site in up to 8.9% of the recovered clones. Delivery of the same version of Ems26 to immature embryos resulted in mutations at the predicted genomic ms26-site in 5.8% of transgenic T(0) plants. This targeted mutagenesis procedure yielded small deletions and insertions at the Ems26 target site consistent with products of double-strand break repair generated by non-homologous end joining. One of 21 mutagenized T(0) plants carried two mutated alleles of the MS26 gene. As expected, the bi-allelic mutant T(0) plant and the T(1) progeny homozygous for the ms26 mutant alleles were male-sterile. This paper described the second maize chromosomal locus (liguless-1 being the first one) mutagenized by a re-designed I-CreI-based endonuclease, demonstrating the general utility of these molecules for targeted mutagenesis in plants.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Genes de Plantas , Infertilidad Vegetal/genética , Zea mays/genética , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Marcación de Gen , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutagénesis , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Transformación Genética , Zea mays/fisiología
20.
Mol Biol Evol ; 30(12): 2676-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24048585

RESUMEN

Inteins are self-splicing parasitic genetic elements found in all domains of life. These genetic elements are found in highly conserved positions in conserved proteins. One protein family that has been invaded by inteins is the vacuolar and archaeal catalytic ATPase subunits (vma-1). There are two intein insertion sites in this protein, "a" and "b." The b site was previously thought to be only invaded in archaeal lineages. Here we survey the distribution and evolutionary histories of the b site inteins and show that the intein is present in more lineages than previously annotated, including a bacterial lineage, Mahella australiensis 50-1 BON. We present evidence, through ancestral character state reconstruction and substitution ratios between host genes and inteins, for several transfers of this intein between divergent species, including an interdomain transfer between the archaea and bacteria. Although inteins may persist within a single population or species for long periods of time, transfer of the vma-1b intein between divergent species contributed to the distribution of this intein.


Asunto(s)
Archaea/genética , Bacterias/genética , Evolución Molecular , Inteínas/genética , ATPasas de Translocación de Protón Vacuolares/genética , Sustitución de Aminoácidos , Archaea/clasificación , Archaea/enzimología , Bacterias/enzimología , Transferencia de Gen Horizontal , Genes Arqueales , Genes Bacterianos , Filogenia , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA