Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 62: 447-464, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34516289

RESUMEN

Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.


Asunto(s)
Canales de Potasio KCNQ , Medicina Tradicional , Humanos , Canales de Potasio KCNQ/metabolismo
2.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884814

RESUMEN

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Asunto(s)
Potenciales de Acción , Glicina , Neuronas , Núcleo Accumbens , Receptores Acoplados a Proteínas G , Animales , Glicina/farmacología , Glicina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Potenciales de Acción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Glicina/metabolismo , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Neuronas Espinosas Medianas
3.
J Neurosci ; 43(27): 4972-4983, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277177

RESUMEN

The functional heterogeneity of hippocampal CA3 pyramidal neurons has emerged as a key aspect of circuit function. Here, we explored the effects of long-term cholinergic activity on the functional heterogeneity of CA3 pyramidal neurons in organotypic slices obtained from male rat brains. Application of agonists to either AChRs generally, or mAChRs specifically, induced robust increases in network activity in the low-gamma range. Prolonged AChR stimulation for 48 h uncovered a population of hyperadapting CA3 pyramidal neurons that typically fired a single, early action potential in response to current injection. Although these neurons were present in control networks, their proportions were dramatically increased following long-term cholinergic activity. Characterized by the presence of a strong M-current, the hyperadaptation phenotype was abolished by acute application of either M-channel antagonists or the reapplication of AChR agonists. We conclude that long-term mAChR activation modulates the intrinsic excitability of a subset of CA3 pyramidal cells, uncovering a highly plastic cohort of neurons that are sensitive to chronic ACh modulation. Our findings provide evidence for the activity-dependent plasticity of functional heterogeneity in the hippocampus.SIGNIFICANCE STATEMENT The large heterogeneity of neuron types in the brain, each with its own specific functional properties, provides the rich cellular tapestry needed to account for the vast diversity of behaviors. By studying the functional properties of neurons in the hippocampus, a region of the brain involved in learning and memory, we find that exposure to the neuromodulator acetylcholine can alter the relative number of functionally defined neuron types. Our findings suggest that the heterogeneity of neurons in the brain is not a static feature but can be modified by the ongoing activity of the circuits to which they belong.


Asunto(s)
Hipocampo , Células Piramidales , Ratas , Animales , Masculino , Hipocampo/fisiología , Células Piramidales/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colinérgicos/farmacología
4.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049972

RESUMEN

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Giro Dentado/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Hipocampo/metabolismo , Neuronas/fisiología , Canal de Potasio KCNQ2/genética
5.
Annu Rev Pharmacol Toxicol ; 61: 381-400, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32667860

RESUMEN

Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five ß-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of ß-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Potenciales de Acción , Humanos , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Transducción de Señal
6.
J Physiol ; 601(24): 5751-5775, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37988235

RESUMEN

The size principle is a key mechanism governing the orderly recruitment of motor units and is believed to be dependent on passive properties of the constituent motoneurons. However, motoneurons are endowed with voltage-sensitive ion channels that create non-linearities in their input-output functions. Here we describe a role for the M-type potassium current, conducted by KCNQ channels, in the control of motoneuron recruitment in mice. Motoneurons were studied with whole-cell patch clamp electrophysiology in transverse spinal slices and identified based on delayed (fast) and immediate (slow) onsets of repetitive firing. M-currents were larger in delayed compared to immediate firing motoneurons, which was not reflected by variations in the presence of Kv7.2 or Kv7.3 subunits. Instead, a more depolarized spike threshold in delayed-firing motoneurons afforded a greater proportion of the total M-current to become activated within the subthreshold voltage range, which translated to a greater influence on their recruitment with little influence on their firing rates. Pharmacological activation of M-currents also influenced motoneuron recruitment at the population level, producing a rightward shift in the recruitment curve of monosynaptic reflexes within isolated mouse spinal cords. These results demonstrate a prominent role for M-type potassium currents in regulating the function of motor units, which occurs primarily through the differential control of motoneuron subtype recruitment. More generally, these findings highlight the importance of active properties mediated by voltage-sensitive ion channels in the differential control of motoneuron recruitment, which is a key mechanism for the gradation of muscle force. KEY POINTS: M-currents exert an inhibitory influence on spinal motor output. This inhibitory influence is exerted by controlling the recruitment, but not the firing rate, of high-threshold fast-like motoneurons, with limited influence on low-threshold slow-like motoneurons. Preferential control of fast motoneurons may be linked to a larger M-current that is activated within the subthreshold voltage range compared to slow motoneurons. Larger M-currents in fast compared to slow motoneurons are not accounted for by differences in Kv7.2 or Kv7.3 channel composition. The orderly recruitment of motoneuron subtypes is shaped by differences in the contribution of voltage-gated ion channels, including KCNQ channels. KCNQ channels may provide a target to dynamically modulate the recruitment gain across the motor pool and readily adjust movement vigour.


Asunto(s)
Neuronas Motoras , Potasio , Humanos , Animales , Ratones , Potenciales de Acción/fisiología , Neuronas Motoras/fisiología , Fenómenos Electrofisiológicos , Canales Iónicos
7.
Annu Rev Pharmacol Toxicol ; 60: 9-30, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31914894

RESUMEN

Here, I recount some adventures that I and my colleagues have had over some 60 years since 1957 studying the effects of drugs and neurotransmitters on neuronal excitability and ion channel function, largely, but not exclusively, using sympathetic neurons as test objects. Studies include effects of centrally active drugs on sympathetic transmission; neuronal action and neuroglial uptake of GABA in the ganglia and brain; the action of muscarinic agonists on sympathetic neurons; the action of bradykinin on neuroblastoma-derived cells; and the identification of M-current as a target for muscarinic action, including experiments to determine its distribution, molecular composition, neurotransmitter sensitivity, and intracellular regulation by phospholipids and their hydrolysis products. Techniques used include electrophysiological recording (extracellular, intracellular microelectrode, whole-cell, and single-channel patch-clamp), autoradiography, messenger RNA and complementary DNA expression, antibody injection, antisense knockdown, and membrane-targeted lipidated peptides. I finish with some recollections about my scientific career, funding, and changes in laboratory life and pharmacology research over the past 60 years.


Asunto(s)
Canales Iónicos/efectos de los fármacos , Neuronas/efectos de los fármacos , Farmacología , Animales , Humanos , Canales Iónicos/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Preparaciones Farmacéuticas/administración & dosificación
8.
Cereb Cortex ; 32(14): 2907-2923, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34730179

RESUMEN

Kainate receptors (KARs) are key regulators of synaptic circuits by acting at pre- and postsynaptic sites through either ionotropic or metabotropic actions. KARs can be activated by kainate, a potent neurotoxin, which induces acute convulsions. Here, we report that the acute convulsive effect of kainate mostly depends on GluK2/GluK5 containing KARs. By contrast, the acute convulsive activity of pilocarpine and pentylenetetrazol is not alleviated in the absence of KARs. Unexpectedly, the genetic inactivation of GluK2 rather confers increased susceptibility to acute pilocarpine-induced seizures. The mechanism involves an enhanced excitability of GluK2-/- CA3 pyramidal cells compared with controls upon pilocarpine application. Finally, we uncover that the absence of GluK2 increases pilocarpine modulation of Kv7/M currents. Taken together, our findings reveal that GluK2-containing KARs can control the excitability of hippocampal circuits through interaction with the neuromodulatory cholinergic system.


Asunto(s)
Ácido Kaínico , Pilocarpina , Receptores de Ácido Kaínico , Región CA1 Hipocampal/metabolismo , Colinérgicos/farmacología , Eliminación de Gen , Humanos , Pilocarpina/toxicidad , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Receptor de Ácido Kaínico GluK2
9.
J Neurosci ; 41(46): 9521-9538, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620719

RESUMEN

KCNQ-Kv7 channels are found at the axon initial segment of pyramidal neurons, where they control cell firing and membrane potential. In oriens lacunosum moleculare (O-LM) interneurons, these channels are mainly expressed in the dendrites, suggesting a peculiar function of Kv7 channels in these neurons. Here, we show that Kv7 channel activity is upregulated following induction of presynaptic long-term synaptic depression (LTD) in O-LM interneurons from rats of both sex, thus resulting in a synergistic long-term depression of intrinsic excitability (LTD-IE). Both LTD and LTD-IE involve endocannabinoid (eCB) biosynthesis for induction. However, although LTD is dependent on cannabinoid type 1 receptors, LTD-IE is not. Molecular modeling shows a strong interaction of eCBs with Kv7.2/3 channel, suggesting a persistent action of these lipids on Kv7 channel activity. Our data thus unveil a major role for eCB synthesis in triggering both synaptic and intrinsic depression in O-LM interneurons.SIGNIFICANCE STATEMENT In principal cells, Kv7 channels are essentially located at the axon initial segment. In contrast, in O-LM interneurons, Kv7 channels are highly expressed in the dendrites, suggesting a singular role of these channels in O-LM cell function. Here, we show that LTD of excitatory inputs in O-LM interneurons is associated with an upregulation of Kv7 channels, thus resulting in a synergistic LTD of LTD-IE. Both forms of plasticity are mediated by the biosynthesis of eCBs. Stimulation of CB1 receptors induces LTD, whereas the direct interaction of eCBs with Kv7 channels induces LTD-IE. Our results thus provide a previously unexpected involvement of eCBs in long-lasting plasticity of intrinsic excitability in GABAergic interneurons.


Asunto(s)
Endocannabinoides/metabolismo , Interneuronas/metabolismo , Canales de Potasio KCNQ/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Animales , Femenino , Hipocampo/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
10.
J Physiol ; 600(10): 2429-2460, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35389519

RESUMEN

De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of voltage-gated potassium Kv7/M channels are the main cause of developmental and epileptic encephalopathy with neonatal onset. Although seizures usually resolve during development, cognitive/motor deficits persist. To gain a better understanding of the cellular mechanisms underlying network dysfunction and their progression over time, we investigated in vivo, using local field potential recordings of freely moving animals, and ex vivo in layers II/III and V of motor cortical slices, using patch-clamp recordings, the electrophysiological properties of pyramidal cells from a heterozygous knock-in mouse model carrying the Kv7.2 p.T274M pathogenic variant during neonatal, postweaning and juvenile developmental stages. We found that knock-in mice displayed spontaneous seizures preferentially at postweaning rather than at juvenile stages. At the cellular level, the variant led to a reduction in M ​​current density/conductance and to neuronal hyperexcitability. These alterations were observed during the neonatal period in pyramidal cells of layers II/III and during the postweaning stage in pyramidal cells of layer V. Moreover, there was an increase in the frequency of spontaneous network-driven events mediated by GABA receptors, suggesting that the excitability of interneurons was also increased. However, all these alterations were no longer observed in layers II/III and V of juvenile mice. Thus, our data indicate that the action of the variant is regulated developmentally. This raises the possibility that the age-related seizure remission observed in KCNQ2-related developmental and epileptic encephalopathy patients results from a time-limited alteration of Kv7 channel activity and neuronal excitability. KEY POINTS: The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to developmental and epileptic encephalopathy has been analysed both in vivo and ex vivo in layers II/III and V of motor cortical slices from a knock-in mouse model during development at neonatal, postweaning and juvenile stages. M current density and conductance are decreased and the excitability of layer II/III pyramidal cells is increased in slices from neonatal and postweaning knock-in mice but not from juvenile knock-in mice. M current and excitability of layer V pyramidal cells are impacted in knock-in mice only at the postweaning stage. Spontaneous GABAergic network-driven events can be recorded until the postweaning stage, and their frequency is increased in layers II/III of the knock-in mice. Knock-in mice display spontaneous seizures preferentially at postweaning rather than at juvenile stages.


Asunto(s)
Encefalopatías , Canal de Potasio KCNQ2 , Convulsiones , Animales , Modelos Animales de Enfermedad , Humanos , Canal de Potasio KCNQ2/genética , Ratones , Proteínas del Tejido Nervioso , Células Piramidales
11.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583973

RESUMEN

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Niño , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Canales de Potasio KCNQ , Ratones , Mutación Missense , Convulsiones
12.
Epilepsia ; 63(11): 2813-2826, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36047730

RESUMEN

Variants in the Kv7.2 channel subunit encoded by the KCNQ2 gene cause epileptic disorders ranging from a benign form with self-limited epileptic seizures and normal development to severe forms with intractable epileptic seizures and encephalopathy. The biological mechanisms involved in these neurological diseases are still unclear. The disease remains intractable in patients affected by the severe form. Over the past 20 years, KCNQ2 models have been developed to elucidate pathological mechanisms and to identify new therapeutic targets. The diversity of Kcnq2 mouse models has proven invaluable to access neuronal networks and evaluate the associated cognitive deficits. This review summarizes the available models and their contribution to our current understanding of KCNQ2 epileptic disorders.


Asunto(s)
Encefalopatías , Canal de Potasio KCNQ2 , Ratones , Animales , Canal de Potasio KCNQ2/genética , Mutación , Convulsiones/genética , Encefalopatías/genética , Modelos Animales de Enfermedad , Proteínas del Tejido Nervioso/genética
13.
Neurobiol Dis ; 156: 105425, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34119635

RESUMEN

Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3-8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.


Asunto(s)
Hipocampo/fisiopatología , Células Piramidales/fisiología , Convulsiones/fisiopatología , Accidente Cerebrovascular/fisiopatología , Ritmo Teta/fisiología , Animales , Hipocampo/citología , Masculino , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Accidente Cerebrovascular/complicaciones
14.
Handb Exp Pharmacol ; 267: 185-230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33860384

RESUMEN

Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.


Asunto(s)
Epilepsia , Trastornos Mentales , Humanos , Canales de Potasio KCNQ/genética , Neuronas
15.
Proc Natl Acad Sci U S A ; 115(10): 2395-2400, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463698

RESUMEN

The Kv7.2 (KCNQ2) channel is the principal molecular component of the slow voltage-gated, noninactivating K+ M-current, a key controller of neuronal excitability. To investigate the calmodulin (CaM)-mediated Ca2+ gating of the channel, we used NMR spectroscopy to structurally and dynamically describe the association of helices hA and hB of Kv7.2 with CaM, as a function of Ca2+ concentration. The structures of the CaM/Kv7.2-hAB complex at two different calcification states are reported here. In the presence of a basal cytosolic Ca2+ concentration (10-100 nM), only the N-lobe of CaM is Ca2+-loaded and the complex (representative of the open channel) exhibits collective dynamics on the millisecond time scale toward a low-populated excited state (1.5%) that corresponds to the inactive state of the channel. In response to a chemical or electrical signal, intracellular Ca2+ levels rise up to 1-10 µM, triggering Ca2+ association with the C-lobe. The associated conformational rearrangement is the key biological signal that shifts populations to the closed/inactive channel. This reorientation affects the C-lobe of CaM and both helices in Kv7.2, allosterically transducing the information from the Ca2+-binding site to the transmembrane region of the channel.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canal de Potasio KCNQ2 , Animales , Calcio/química , Calmodulina/química , Bovinos , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/fisiología , Conformación Proteica , Electricidad Estática , Termodinámica
16.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445666

RESUMEN

Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non-selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB2 receptors and seizures and emphasize the potential mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia cells. The unique features of CB2Rs, such as lower expression levels under physiological conditions and high inducibility under epileptic conditions, make it an important target for future research on drug-resistant epilepsy.


Asunto(s)
Cannabinoides/farmacología , Epilepsia/tratamiento farmacológico , Receptor Cannabinoide CB2/efectos de los fármacos , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Humanos , Ligandos , Microglía/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptores de Cannabinoides/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
17.
J Biol Chem ; 294(15): 6094-6112, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30808708

RESUMEN

Calmodulin (CaM) conveys intracellular Ca2+ signals to KCNQ (Kv7, "M-type") K+ channels and many other ion channels. Whether this "calmodulation" involves a dramatic structural rearrangement or only slight perturbations of the CaM/KCNQ complex is as yet unclear. A consensus structural model of conformational shifts occurring between low nanomolar and physiologically high intracellular [Ca2+] is still under debate. Here, we used various techniques of biophysical chemical analyses to investigate the interactions between CaM and synthetic peptides corresponding to the A and B domains of the KCNQ4 subtype. We found that in the absence of CaM, the peptides are disordered, whereas Ca2+/CaM imposed helical structure on both KCNQ A and B domains. Isothermal titration calorimetry revealed that Ca2+/CaM has higher affinity for the B domain than for the A domain of KCNQ2-4 and much higher affinity for the B domain when prebound with the A domain. X-ray crystallography confirmed that these discrete peptides spontaneously form a complex with Ca2+/CaM, similar to previous reports of CaM binding KCNQ-AB domains that are linked together. Microscale thermophoresis and heteronuclear single-quantum coherence NMR spectroscopy indicated the C-lobe of Ca2+-free CaM to interact with the KCNQ4 B domain (Kd ∼10-20 µm), with increasing Ca2+ molar ratios shifting the CaM-B domain interactions via only the CaM C-lobe to also include the N-lobe. Our findings suggest that in response to increased Ca2+, CaM undergoes lobe switching that imposes a dramatic mutually induced conformational fit to both the proximal C terminus of KCNQ4 channels and CaM, likely underlying Ca2+-dependent regulation of KCNQ gating.


Asunto(s)
Calcio/química , Calmodulina/química , Canales de Potasio KCNQ/química , Animales , Células CHO , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Cricetulus , Cristalografía por Rayos X , Humanos , Activación del Canal Iónico , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
18.
J Neurophysiol ; 124(2): 544-556, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609564

RESUMEN

Significant evidence has accumulated to support the hypothesis that hippocampal region CA1 operates as an associative mismatch detector (e.g., Hasselmo ME, Schnell E, Barkai E. J Neurosci 15: 5249-5262, 1995; Duncan K, Curtis C, Davachi L. J Neurosci 29: 131-139, 2009; Kumaran D, Maguire EA. J Neurosci 27: 8517-8524, 2007; Lisman JE, Grace AA. Neuron 46: 703-713, 2005; Lisman JE, Otmakhova NA. Hippocampus 11: 551-568 2001; Lörincz A, Buzsáki G. Ann N Y Acad Sci 911: 83-111, 2000; Meeter M, Murre JMJ, Talamini LM. Hippocampus 14: 722-741, 2004; Schiffer AM, Ahlheim C, Wurm MF, Schubotz RI. PLoS One 7: e36445, 2012; Vinogradova OS. Hippocampus 11: 578-598 2001). CA1 compares predictive synaptic signals from CA3 with synaptic signals from EC3, which reflect actual sensory inputs. The new CA1 pyramidal model presented here shows that the distal-proximal segregation of synaptic inputs from EC3 versus CA3, along with other biophysical features, enable such pyramids to serve as comparators that switch output encoding from a brief burst, for a match, to prolonged tonic spiking, for a mismatch. By including often-overlooked features of CA1 pyramidal neurons, this new model allows simulation of pharmacological effects that can eliminate either the match (phasic mode) response or the mismatch (tonic mode) response. These simulations reveal that dysfunctions can arise from either too much or too little ACh stimulation of the muscarinic receptors that control KCNQ channels. Additionally, a dysfunction caused by administration of an N-methyl-d-aspartate antagonist could be rescued by simultaneous administration of a KCNQ channel agonist, such as retigabine.NEW & NOTEWORTHY Hippocampal region CA1 operates as an associative mismatch detector, comparing predictive signals from CA3 with signals from EC3 reflecting sensory inputs. This new CA1 pyramidal model shows that biophysical features enable these comparators to switch output between brief bursts for matches and tonic spiking for mismatches. This suggests that cognitive learning models (e.g., predictive coding) may require much less match/mismatch circuitry than commonly assumed. Additional simulations illuminate deficits seen in psychiatric disorders and drug-induced states.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Fenómenos Electrofisiológicos/fisiología , Corteza Entorrinal/fisiología , Aprendizaje/fisiología , Modelos Biológicos , Células Piramidales/fisiología , Animales , Simulación por Computador , Humanos
19.
Neuroendocrinology ; 110(7-8): 582-594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31484184

RESUMEN

Obesity and anorexia result in dysregulation of the hypothalamic-pituitary-gonadal axis, negatively impacting reproduction. Ghrelin, secreted from the stomach, potentially mediates negative energy states and neuroendocrine control of reproduction by acting through the growth hormone secretagogue receptor (GHSR). GHSR is expressed in hypothalamic arcuate (ARC) Kisspeptin/Neurokinin B (Tac2)/Dynorphin (KNDy) neurons. Ghrelin is known to inhibit the M-current produced by KCNQ channels in other ARC neurons. In addition, we have shown 17ß-estradiol (E2) increases Ghsr expression in KNDy neurons 6-fold and increases the M-current in NPY neurons. We hypothesize that E2 increases GHSR expression in KNDy neurons to increase ghrelin sensitivity during negative energy states. Furthermore, we suspect ghrelin targets the M-current in KNDy neurons to control reproduction and energy homeostasis. We utilized ovariectomized Tac2-EGFP adult female mice, pretreated with estradiol benzoate (EB) or oil vehicle and performed whole-cell-patch-clamp recordings to elicit the M-current in KNDy neurons using standard activation protocols in voltage-clamp. Using the selective KCNQ channel blocker XE-991 (40 µM) to target the M-current, oil- and EB-treated mice showed a decrease in the maximum peak current by 75.7 ± 13.8 pA (n = 10) and 68.0 ± 14.7 pA (n = 11), respectively. To determine the actions of ghrelin on the M-current, ghrelin was perfused (100 nM) in oil- and EB-treated mice resulting in the suppression of the maximum peak current by 58.5 ± 15.8 pA (n = 9) and 59.2 ± 11.9 pA (n = 9), respectively. KNDy neurons appeared more sensitive to ghrelin when pretreated with EB, revealing that ARC KNDy neurons are more sensitive to ghrelin during states of high E2.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Estradiol/farmacología , Ghrelina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Ghrelina/metabolismo , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ovariectomía , Técnicas de Placa-Clamp , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(47): E10234-E10243, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109270

RESUMEN

Alterations in synaptic input, persisting for hours to days, elicit homeostatic plastic changes in the axon initial segment (AIS), which is pivotal for spike generation. Here, in hippocampal pyramidal neurons of both primary cultures and slices, we triggered a unique form of AIS plasticity by selectively targeting M-type K+ channels, which predominantly localize to the AIS and are essential for tuning neuronal excitability. While acute M-current inhibition via cholinergic activation or direct channel block made neurons more excitable, minutes to hours of sustained M-current depression resulted in a gradual reduction in intrinsic excitability. Dual soma-axon patch-clamp recordings combined with axonal Na+ imaging and immunocytochemistry revealed that these compensatory alterations were associated with a distal shift of the spike trigger zone and distal relocation of FGF14, Na+, and Kv7 channels but not ankyrin G. The concomitant distal redistribution of FGF14 together with Nav and Kv7 segments along the AIS suggests that these channels relocate as a structural and functional unit. These fast homeostatic changes were independent of l-type Ca2+ channel activity but were contingent on the crucial AIS protein, protein kinase CK2. Using compartmental simulations, we examined the effects of varying the AIS position relative to the soma and found that AIS distal relocation of both Nav and Kv7 channels elicited a decrease in neuronal excitability. Thus, alterations in M-channel activity rapidly trigger unique AIS plasticity to stabilize network excitability.


Asunto(s)
Segmento Inicial del Axón/fisiología , Quinasa de la Caseína II/metabolismo , Canal de Potasio KCNQ1/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Modelos Neurológicos , Técnicas de Placa-Clamp , Cultivo Primario de Células , Imagen de Colorante Sensible al Voltaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA