Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Pharm X ; 5: 100146, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36593986

RESUMEN

Cellulose beads emerge as carriers for poorly water-soluble drugs due to their eco-friendly raw materials and favorable porous structure. However, drug dissolution may be limited by their poor swelling ability and the presence of closed pores caused by shrinkage of the pristine cellulose beads. In this study, novel cellulose beads that can swell in acidic environment were prepared by introducing ethylenediamine (EDA) on dialdehyde cellulose (DAC), thereby addressing the shrinkage and closed pore problem of cellulose beads. The effect of the ratio of EDA on the swelling behavior and amine content of beads was studied. Three model drugs with different physicochemical properties were selected to study the physical state of loaded drugs and their release behavior. According to the results of XRPD and DSC, indomethacin and itraconazole loaded in the beads were amorphous at a drug loading of 20%, but fenofibrate was partially crystalline. Both bead size and the ratio of amine groups influenced the release behavior of the model drugs. The in vitro dissolution results showed that the cationic beads greatly improved the solubility and dissolution rate of the drug compared with the crystalline drug. Beads with a small size and high ratio of EDA tend to achieve a better drug dissolution rate and cumulative release percentage. Physical stability studies of the itraconazole-loaded beads were also implemented under four different temperature/humidity conditions for up to two months. The results showed that crystallization only appeared after two months of storage at 40°/75% RH, and the drug maintained a non-crystalline state in the other three storage conditions (0 °C/0 %RH, 0 °C/32 %RH, 25 °C/32 %RH). In conclusion, the novel pH-responsive cationic cellulose beads show great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.

2.
Curr Res Food Sci ; 5: 1266-1275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061408

RESUMEN

This study evaluated the viability of encapsulated Lactobacillus delbrueckii subsp. bulgaricus in chocolate during storage and in-vitro gastrointestinal transit. Flavonoid contents and short chain fatty acids (SCFAs) production during gastrointestinal transit were also assessed. Encapsulated L. delbrueckii subsp. bulgaricus survived well in chocolates >7 logs both after 120 days of storage at 4 °C and 25 °C, and during in-vitro gastrointestinal transit. The release of SCFAs through in-vitro gastrointestinal digestion and colonic fermentation revealed that probiotic-chocolates could be an excellent source of nutrients for the gut microbiota. Encapsulated probiotic in chocolates with 70% cocoa produced significantly (P < 0.05) more acetic, propionic, isobutyric, butyric and isovaleric acids than that with 45% cocoa. The bioconversion results of a specific polyphenol by L. delbrueckii subsp. bulgaricus exhibited that chocolate polyphenols could be utilized by probiotics for their metabolism. These findings confirmed that chocolate could be successfully fortified with L. delbrueckii subsp. bulgaricus encapsulation to improve health promoting properties of chocolates.

3.
Acta Pharm Sin B ; 12(3): 1432-1446, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530160

RESUMEN

In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (e.g., small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.61- and 5.65-times in AUC). After doxorubicin (DOX) loading into CMSs, DOX@CMSWs exhibited controlled drug release manners with pH responsiveness in vitro. Orally administered DOX@CMSWs could efficiently overcome the intestinal epithelium barrier (IEB), and resulted in satisfactory oral bioavailability of DOX (up to 348%). CMSWs were also proved to exhibit good biocompatibility and unique biodegradability. These findings displayed superior ability of CMSWs in crossing IEB through multiple topological mechanisms and would provide useful information on the rational design of nano-drug delivery systems.

4.
Acta Pharm Sin B ; 11(8): 2469-2487, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34522595

RESUMEN

Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.

5.
Bioact Mater ; 3(3): 334-340, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29988516

RESUMEN

This study focuses on the behavior of chitosan (CHI) and its polyelectrolyte complexes with carboxymethyl starch (CMS) used as monolithic matrices with acetaminophen as drug tracer. Two different chitosan grades were tested alone or associated in various ratios with CMS as excipients for tablets obtained by direct compression. The degree of deacetylation (DDA) of CHI, estimated from 1H NMR and FTIR data, was correlated with X-ray diffraction and scanning electron microscopy (SEM) to evaluate structural organization of the monolithic matrices. In vitro drug dissolution assays showed major differences in CHI kinetic profiles between tablets exposed to acidic medium for 2h (to mimick gastric passage) prior to dissolution in simulated intestinal fluid (SIF), and those administered directly to SIF. Prior exposure to acidic SGF conducted to longer dissolution profiles (release completed after 16 h) and preservation of tablet shape, whereas tablets directly incubated in SIF were rapidly disintegrated. The improved properties of chitosan matrices exposed to SGF may be related to an outer compact coating layer (visible in SEM). The effect of self-stabilization of chitosan in acidic medium was compared to that due to formation of polyelectrolyte complexes (PEC) in co-processed polymeric systems (CHI:CMS). The self-formed membrane following exposure to gastric acidity appears to help maintaining tablet integrity and allows higher drug loading, recommending CHI and its complexes with CMS as excipients for drug delivery.

6.
Acta Pharm Sin B ; 8(1): 97-105, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29872626

RESUMEN

Biomimetic nanocarriers are emerging as efficient vehicles to facilitate dietary absorption of biomacromolecules. In this study, two vitamins, thiamine and niacin, are employed to decorate liposomes loaded with insulin, thus facilitating oral absorption via vitamin ligand-receptor interactions. Both vitamins are conjugated with stearamine, which works to anchor the ligands to the surface of liposomes. Liposomes prepared under optimum conditions have a mean particle size of 125-150 nm and an insulin entrapment efficiency of approximately 30%-36%. Encapsulation into liposomes helps to stabilize insulin due to improved resistance against enzymatic disruption, with 60% and 80% of the insulin left after 4 h when incubated in simulated gastric and intestinal fluids, respectively, whereas non-encapsulated insulin is broken down completely at 0.5 h. Preservation of insulin bioactivity against preparative stresses is validated by intra-peritoneal injection of insulin after release from various liposomes using the surfactant Triton X-100. In a diabetic rat model chemically induced by streptozotocin, both thiamine- and niacin-decorated liposomes showed a comparable and sustained mild hypoglycemic effect. The superiority of decorated liposomes over conventional liposomes highlights the contribution of vitamin ligands. It is concluded that decoration of liposomes with thiamine or niacin facilitates interactions with gastrointestinal vitamin receptors and thereby facilitates oral absorption of insulin-loaded liposomes.

7.
GM Crops Food ; 6(2): 80-102, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26018138

RESUMEN

Maize (Zea mays) is a widely cultivated cereal that has been safely consumed by humans and animals for centuries. Transgenic or genetically engineered insect-resistant and herbicide-tolerant maize, are commercially grown on a broad scale. Event TC1507 (OECD unique identifier: DAS-Ø15Ø7-1) or the Herculex®(#) I trait, an insect-resistant and herbicide-tolerant maize expressing Cry1F and PAT proteins, has been registered for commercial cultivation in the US since 2001. A science-based safety assessment was conducted on TC1507 prior to commercialization. The safety assessment addressed allergenicity; acute oral toxicity; subchronic toxicity; substantial equivalence with conventional comparators, as well as environmental impact. Results from biochemical, physicochemical, and in silico investigations supported the conclusion that Cry1F and PAT proteins are unlikely to be either allergenic or toxic to humans. Also, findings from toxicological and animal feeding studies supported that maize with TC1507 is as safe and nutritious as conventional maize. Maize with TC1507 is not expected to behave differently than conventional maize in terms of its potential for invasiveness, gene flow to wild and weedy relatives, or impact on non-target organisms. These safety conclusions regarding TC1507 were acknowledged by over 20 regulatory agencies including United States Environment Protection Agency (US EPA), US Department of Agriculture (USDA), Canadian Food Inspection Agency (CFIA), and European Food Safety Authority (EFSA) before authorizing cultivation and/or food and feed uses. A comprehensive review of the safety studies on TC1507, as well as some benefits, are presented here to serve as a reference for regulatory agencies and decision makers in other countries where authorization of TC1507 is or will be pursued.


Asunto(s)
Plantas Modificadas Genéticamente/efectos adversos , Zea mays/genética , Alimentación Animal/efectos adversos , Animales , Seguridad de Productos para el Consumidor , Inocuidad de los Alimentos , Humanos , Medición de Riesgo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA