Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(1): 96-105, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559207

RESUMEN

Despite significant recent progress, machine vision systems lag considerably behind their biological counterparts in performance, scalability, and robustness. A distinctive hallmark of the brain is its ability to automatically discover and model objects, at multiscale resolutions, from repeated exposures to unlabeled contextual data and then to be able to robustly detect the learned objects under various nonideal circumstances, such as partial occlusion and different view angles. Replication of such capabilities in a machine would require three key ingredients: (i) access to large-scale perceptual data of the kind that humans experience, (ii) flexible representations of objects, and (iii) an efficient unsupervised learning algorithm. The Internet fortunately provides unprecedented access to vast amounts of visual data. This paper leverages the availability of such data to develop a scalable framework for unsupervised learning of object prototypes-brain-inspired flexible, scale, and shift invariant representations of deformable objects (e.g., humans, motorcycles, cars, airplanes) comprised of parts, their different configurations and views, and their spatial relationships. Computationally, the object prototypes are represented as geometric associative networks using probabilistic constructs such as Markov random fields. We apply our framework to various datasets and show that our approach is computationally scalable and can construct accurate and operational part-aware object models much more efficiently than in much of the recent computer vision literature. We also present efficient algorithms for detection and localization in new scenes of objects and their partial views.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático no Supervisado , Algoritmos , Encéfalo/fisiología , Simulación por Computador , Reconocimiento Facial , Sistemas de Información Geográfica , Humanos , Reconocimiento Visual de Modelos , Percepción Visual
2.
Natl Sci Rev ; 11(6): nwae037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38707198

RESUMEN

Spiking neural networks (SNNs) have superior energy efficiency due to their spiking signal transmission, which mimics biological nervous systems, but they are difficult to train effectively. Although surrogate gradient-based methods offer a workable solution, trained SNNs frequently fall into local minima because they are still primarily based on gradient dynamics. Inspired by the chaotic dynamics in animal brain learning, we propose a chaotic spiking backpropagation (CSBP) method that introduces a loss function to generate brain-like chaotic dynamics and further takes advantage of the ergodic and pseudo-random nature to make SNN learning effective and robust. From a computational viewpoint, we found that CSBP significantly outperforms current state-of-the-art methods on both neuromorphic data sets (e.g. DVS-CIFAR10 and DVS-Gesture) and large-scale static data sets (e.g. CIFAR100 and ImageNet) in terms of accuracy and robustness. From a theoretical viewpoint, we show that the learning process of CSBP is initially chaotic, then subject to various bifurcations and eventually converges to gradient dynamics, consistently with the observation of animal brain activity. Our work provides a superior core tool for direct SNN training and offers new insights into understanding the learning process of a biological brain.

3.
Front Comput Neurosci ; 16: 1062678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465966

RESUMEN

Backpropagation has been regarded as the most favorable algorithm for training artificial neural networks. However, it has been criticized for its biological implausibility because its learning mechanism contradicts the human brain. Although backpropagation has achieved super-human performance in various machine learning applications, it often shows limited performance in specific tasks. We collectively referred to such tasks as machine-challenging tasks (MCTs) and aimed to investigate methods to enhance machine learning for MCTs. Specifically, we start with a natural question: Can a learning mechanism that mimics the human brain lead to the improvement of MCT performances? We hypothesized that a learning mechanism replicating the human brain is effective for tasks where machine intelligence is difficult. Multiple experiments corresponding to specific types of MCTs where machine intelligence has room to improve performance were performed using predictive coding, a more biologically plausible learning algorithm than backpropagation. This study regarded incremental learning, long-tailed, and few-shot recognition as representative MCTs. With extensive experiments, we examined the effectiveness of predictive coding that robustly outperformed backpropagation-trained networks for the MCTs. We demonstrated that predictive coding-based incremental learning alleviates the effect of catastrophic forgetting. Next, predictive coding-based learning mitigates the classification bias in long-tailed recognition. Finally, we verified that the network trained with predictive coding could correctly predict corresponding targets with few samples. We analyzed the experimental result by drawing analogies between the properties of predictive coding networks and those of the human brain and discussing the potential of predictive coding networks in general machine learning.

4.
Front Neurorobot ; 13: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316366

RESUMEN

An effective way to achieve intelligence is to simulate various intelligent behaviors in the human brain. In recent years, bio-inspired learning methods have emerged, and they are different from the classical mathematical programming principle. From the perspective of brain inspiration, reinforcement learning has gained additional interest in solving decision-making tasks as increasing neuroscientific research demonstrates that significant links exist between reinforcement learning and specific neural substrates. Because of the tremendous research that focuses on human brains and reinforcement learning, scientists have investigated how robots can autonomously tackle complex tasks in the form of making a self-driving agent control in a human-like way. In this study, we propose an end-to-end architecture using novel deep-Q-network architecture in conjunction with a recurrence to resolve the problem in the field of simulated self-driving. The main contribution of this study is that we trained the driving agent using a brain-inspired trial-and-error technique, which was in line with the real world situation. Besides, there are three innovations in the proposed learning network: raw screen outputs are the only information which the driving agent can rely on, a weighted layer that enhances the differences of the lengthy episode, and a modified replay mechanism that overcomes the problem of sparsity and accelerates learning. The proposed network was trained and tested under a third-party OpenAI Gym environment. After training for several episodes, the resulting driving agent performed advanced behaviors in the given scene. We hope that in the future, the proposed brain-inspired learning system would inspire practicable self-driving control solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA