Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(11): 1328-1337, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346178

RESUMEN

Rationale: General anesthesia and mechanical ventilation have negative impacts on the respiratory system, causing heterogeneous distribution of lung aeration, but little is known about the ventilation patterns of postoperative patients and their association with clinical outcomes. Objectives: To clarify the phenotypes of ventilation patterns along a gravitational direction after surgery by using electrical impedance tomography (EIT) and to evaluate their association with postoperative pulmonary complications (PPCs) and other relevant clinical outcomes. Methods: Adult postoperative patients at high risk for PPCs, receiving mechanical ventilation on ICU admission (N = 128), were prospectively enrolled between November 18, 2021 and July 18, 2022. PPCs were prospectively scored until hospital discharge, and their association with phenotypes of ventilation patterns was studied. The secondary outcomes were the times to wean from mechanical ventilation and oxygen use and the length of ICU stay. Measurements and Main Results: Three phenotypes of ventilation patterns were revealed by EIT: phenotype 1 (32% [n = 41], a predominance of ventral ventilation), phenotype 2 (41% [n = 52], homogeneous ventilation), and phenotype 3 (27% [n = 35], a predominance of dorsal ventilation). The median PPC score was higher in phenotype 1 and phenotype 3 than in phenotype 2. The median time to wean from mechanical ventilation was longer in phenotype 1 versus phenotype 2. The median duration of ICU stay was longer in phenotype 1 versus phenotype 2. The median time to wean from oxygen use was longer in phenotype 1 and phenotype 3 than in phenotype 2. Conclusions: Inhomogeneous ventilation patterns revealed by EIT on ICU admission were associated with PPCs, delayed weaning from mechanical ventilation and oxygen use, and a longer ICU stay.


Asunto(s)
Impedancia Eléctrica , Complicaciones Posoperatorias , Respiración Artificial , Tomografía , Humanos , Masculino , Femenino , Impedancia Eléctrica/uso terapéutico , Persona de Mediana Edad , Anciano , Respiración Artificial/métodos , Estudios Prospectivos , Tomografía/métodos , Complicaciones Posoperatorias/fisiopatología , Tiempo de Internación/estadística & datos numéricos , Desconexión del Ventilador/métodos , Unidades de Cuidados Intensivos , Adulto
2.
Am J Respir Crit Care Med ; 209(6): 738-747, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38032260

RESUMEN

Rationale: The respiratory mechanisms of a successful transition of preterm infants after birth are largely unknown. Objectives: To describe intrapulmonary gas flows during different breathing patterns directly after birth. Methods: Analysis of electrical impedance tomography data from a previous randomized trial in preterm infants at 26-32 weeks gestational age. Electrical impedance tomography data for individual breaths were extracted, and lung volumes as well as ventilation distribution were calculated for end of inspiration, end of expiratory braking and/or holding maneuver, and end of expiration. Measurements and Main Results: Overall, 10,348 breaths from 33 infants were analyzed. We identified three distinct breath types within the first 10 minutes after birth: tidal breathing (44% of all breaths; sinusoidal breathing without expiratory disruption), braking (50%; expiratory brake with a short duration), and holding (6%; expiratory brake with a long duration). Only after holding breaths did end-expiratory lung volume increase: Median (interquartile range [IQR]) = 2.0 AU/kg (0.6 to 4.3), 0.0 (-1.0 to 1.1), and 0.0 (-1.1 to 0.4), respectively; P < 0.001]. This was mediated by intrathoracic air redistribution to the left and non-gravity-dependent parts of the lung through pendelluft gas flows during braking and/or holding maneuvers. Conclusions: Respiratory transition in preterm infants is characterized by unique breathing patterns. Holding breaths contribute to early lung aeration after birth in preterm infants. This is facilitated by air redistribution during braking/holding maneuvers through pendelluft flow, which may prevent lung liquid reflux in this highly adaptive situation. This study deciphers mechanisms for a successful fetal-to-neonatal transition and increases our pathophysiological understanding of this unique moment in life. Clinical trial registered with www.clinicaltrials.gov (NCT04315636).


Asunto(s)
Recien Nacido Prematuro , Respiración , Humanos , Recién Nacido , Espiración , Edad Gestacional , Recien Nacido Prematuro/fisiología , Pulmón , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38127779

RESUMEN

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X/métodos , Pulmón , Insuficiencia Respiratoria/diagnóstico por imagen , Insuficiencia Respiratoria/terapia , Tomografía/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia
4.
Respir Res ; 25(1): 179, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664685

RESUMEN

BACKGROUND: Prolonged weaning from mechanical ventilation is associated with poor clinical outcome. Therefore, choosing the right moment for weaning and extubation is essential. Electrical Impedance Tomography (EIT) is a promising innovative lung monitoring technique, but its role in supporting weaning decisions is yet uncertain. We aimed to evaluate physiological trends during a T-piece spontaneous breathing trail (SBT) as measured with EIT and the relation between EIT parameters and SBT success or failure. METHODS: This is an observational study in which twenty-four adult patients receiving mechanical ventilation performed an SBT. EIT monitoring was performed around the SBT. Multiple EIT parameters including the end-expiratory lung impedance (EELI), delta Tidal Impedance (ΔZ), Global Inhomogeneity index (GI), Rapid Shallow Breathing Index (RSBIEIT), Respiratory Rate (RREIT) and Minute Ventilation (MVEIT) were computed on a breath-by-breath basis from stable tidal breathing periods. RESULTS: EELI values dropped after the start of the SBT (p < 0.001) and did not recover to baseline after restarting mechanical ventilation. The ΔZ dropped (p < 0.001) but restored to baseline within seconds after restarting mechanical ventilation. Five patients failed the SBT, the GI (p = 0.01) and transcutaneous CO2 (p < 0.001) values significantly increased during the SBT in patients who failed the SBT compared to patients with a successful SBT. CONCLUSION: EIT has the potential to assess changes in ventilation distribution and quantify the inhomogeneity of the lungs during the SBT. High lung inhomogeneity was found during SBT failure. Insight into physiological trends for the individual patient can be obtained with EIT during weaning from mechanical ventilation, but its role in predicting weaning failure requires further study.


Asunto(s)
Impedancia Eléctrica , Tomografía , Desconexión del Ventilador , Humanos , Desconexión del Ventilador/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tomografía/métodos , Monitoreo Fisiológico/métodos , Adulto , Respiración Artificial/métodos , Respiración , Anciano de 80 o más Años , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/fisiología
5.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965590

RESUMEN

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Broncoscopía , Impedancia Eléctrica , Animales , Porcinos , Broncoscopía/métodos , Neumonectomía/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Pulmón/cirugía , Pulmón/fisiología , Tomografía/métodos , Atelectasia Pulmonar/diagnóstico por imagen , Atelectasia Pulmonar/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Factores de Tiempo
6.
Crit Care ; 28(1): 241, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010228

RESUMEN

BACKGROUND: Assessment of regional ventilation/perfusion (V'/Q) mismatch using electrical impedance tomography (EIT) represents a promising advancement for personalized management of the acute respiratory distress syndrome (ARDS). However, accuracy is still hindered by the need for invasive monitoring to calibrate ventilation and perfusion. Here, we propose a non-invasive correction that uses only EIT data and characterized patients with more pronounced compensation of V'/Q mismatch. METHODS: We enrolled twenty-one ARDS patients on controlled mechanical ventilation. Cardiac output was measured invasively, and ventilation and perfusion were assessed by EIT. Relative V'/Q maps by EIT were calibrated to absolute values using the minute ventilation to invasive cardiac output (MV/CO) ratio (V'/Q-ABS), left unadjusted (V'/Q-REL), or corrected by MV/CO ratio derived from EIT data (V'/Q-CORR). The ratio between ventilation to dependent regions and perfusion reaching shunted units ( V D ' /QSHUNT) was calculated as an index of more effective hypoxic pulmonary vasoconstriction. The ratio between perfusion to non-dependent regions and ventilation to dead space units (QND/ V DS ' ) was calculated as an index of hypocapnic pneumoconstriction. RESULTS: Our calibration factor correlated with invasive MV/CO (r = 0.65, p < 0.001), showed good accuracy and no apparent bias. Compared to V'/Q-ABS, V'/Q-REL maps overestimated ventilation (p = 0.013) and perfusion (p = 0.002) to low V'/Q units and underestimated ventilation (p = 0.011) and perfusion (p = 0.008) to high V'/Q units. The heterogeneity of ventilation and perfusion reaching different V'/Q compartments was underestimated. V'/Q-CORR maps eliminated all these differences with V'/Q-ABS (p > 0.05). Higher V D ' / Q SHUNT correlated with higher PaO2/FiO2 (r = 0.49, p = 0.025) and lower shunt fraction (ρ = - 0.59, p = 0.005). Higher Q ND / V DS ' correlated with lower PEEP (ρ = - 0.62, p = 0.003) and plateau pressure (ρ = - 0.59, p = 0.005). Lower values of both indexes were associated with less ventilator-free days (p = 0.05 and p = 0.03, respectively). CONCLUSIONS: Regional V'/Q maps calibrated with a non-invasive EIT-only method closely approximate the ones obtained with invasive monitoring. Higher efficiency of shunt compensation improves oxygenation while compensation of dead space is less needed at lower airway pressure. Patients with more effective compensation mechanisms could have better outcomes.


Asunto(s)
Impedancia Eléctrica , Síndrome de Dificultad Respiratoria , Tomografía , Relación Ventilacion-Perfusión , Humanos , Femenino , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Impedancia Eléctrica/uso terapéutico , Anciano , Relación Ventilacion-Perfusión/fisiología , Tomografía/métodos , Espacio Muerto Respiratorio/fisiología , Respiración Artificial/métodos , Adulto , Monitoreo Fisiológico/métodos , Gasto Cardíaco/fisiología
7.
Crit Care ; 28(1): 274, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154185

RESUMEN

OBJECTIVE: Our study aimed to investigate the effects of different extracorporeal membrane oxygenation (ECMO) blood flow rates on lung perfusion assessment using the saline bolus-based electrical impedance tomography (EIT) technique in patients on veno-venous (VV) ECMO. METHODS: In this single-centered prospective physiological study, patients on VV ECMO who met the ECMO weaning criteria were assessed for lung perfusion using saline bolus-based EIT at various ECMO blood flow rates (gradually decreased from 4.5 L/min to 3.5 L/min, 2.5 L/min, 1.5 L/min, and finally to 0 L/min). Lung perfusion distribution, dead space, shunt, ventilation/perfusion matching, and recirculation fraction at different flow rates were compared. RESULTS: Fifteen patients were included. As the ECMO blood flow rate decreased from 4.5 L/min to 0 L/min, the recirculation fraction decreased significantly. The main EIT-based findings were as follows. (1) Median lung perfusion significantly increased in region-of-interest (ROI) 2 and the ventral region [38.21 (34.93-42.16)% to 41.29 (35.32-43.75)%, p = 0.003, and 48.86 (45.53-58.96)% to 54.12 (45.07-61.16)%, p = 0.037, respectively], whereas it significantly decreased in ROI 4 and the dorsal region [7.87 (5.42-9.78)% to 6.08 (5.27-9.34)%, p = 0.049, and 51.14 (41.04-54.47)% to 45.88 (38.84-54.93)%, p = 0.037, respectively]. (2) Dead space significantly decreased, and ventilation/perfusion matching significantly increased in both the ventral and global regions. (3) No significant variations were observed in regional and global shunt. CONCLUSIONS: During VV ECMO, the ECMO blood flow rate, closely linked to recirculation fraction, could affect the accuracy of lung perfusion assessment using hypertonic saline bolus-based EIT.


Asunto(s)
Impedancia Eléctrica , Oxigenación por Membrana Extracorpórea , Pulmón , Tomografía , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Masculino , Femenino , Estudios Prospectivos , Impedancia Eléctrica/uso terapéutico , Persona de Mediana Edad , Adulto , Tomografía/métodos , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Solución Salina Hipertónica/uso terapéutico , Anciano , Velocidad del Flujo Sanguíneo/fisiología
8.
Am J Respir Crit Care Med ; 208(1): 25-38, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37097986

RESUMEN

Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Impedancia Eléctrica , Estudios Prospectivos , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X/métodos , Tomografía/métodos
9.
BMC Pulm Med ; 24(1): 454, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285376

RESUMEN

INTRODUCTION: The apnea test (AT) is a crucial procedure in determining brain death (BD), with detection of spontaneous breathing efforts serving as a key criterion. Numerous national statutes mandate complete disconnection of the patient from the ventilator during the procedure to open the airway directly to the atmosphere. These regulations mandate visual observation as an exclusive option for detecting breathing efforts. However, reliance on visual observation alone can pose challenges in identifying subtle respiratory movements. CASE PRESENTATION: This case report presents a 55-year-old morbidly obese male patient with suspected BD due to cerebral hemorrhage undergoing an AT. The AT was performed with continuous electrical impedance tomography (EIT) monitoring. Upon detection of spontaneous breathing movements by both visual observation and EIT, the AT was aborted, and the patient was reconnected to the ventilator. EIT indicated a shift in ventilation distribution from the ventral to the dorsal regions, indicating the presence of spontaneous breathing efforts. EIT results also suggested the patient experienced a slow but transient initial recovery phase, likely due to atelectasis induced by morbid obesity, before returning to a steady state of ventilatory support. CONCLUSION: The findings suggest EIT could enhance the sensitivity and accuracy of detecting spontaneous breathing efforts, providing additional insights into the respiratory status of patients during the AT.


Asunto(s)
Apnea , Muerte Encefálica , Impedancia Eléctrica , Obesidad Mórbida , Tomografía , Humanos , Masculino , Muerte Encefálica/diagnóstico , Muerte Encefálica/fisiopatología , Persona de Mediana Edad , Apnea/diagnóstico , Apnea/fisiopatología , Tomografía/métodos , Obesidad Mórbida/complicaciones , Obesidad Mórbida/fisiopatología , Respiración , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/fisiopatología
10.
Paediatr Anaesth ; 34(8): 758-767, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38693633

RESUMEN

AIMS: This study determined the optimal positive end-expiratory pressure levels in infants in supine and prone positions under general anesthesia using electrical impedance tomography (EIT). METHODS: This prospective observational single-centre study included infants scheduled for surgery in the prone position. An electrical impedance tomography sensor was applied after inducing general anesthesia. The optimal positive end-expiratory pressure in the supine position was determined in a decremental trial based on EIT and compliance. Subsequently, the patient's position was changed to prone. Electrical impedance tomography parameters, including global inhomogeneity index, regional ventilation delay, opening pressure, the centre of ventilation, and pendelluft volume, were continuously obtained up to 1 h after prone positioning. The optimal positive end-expiratory pressure in the prone position was similarly determined. RESULTS: Data from 30 infants were analyzed. The mean value of electrical impedance tomography-based optimal positive end-expiratory pressure in the prone position was significantly higher than that in the supine position [10.9 (1.6) cmH2O and 6.1 (0.9) cmH2O, respectively (p < .001)]. Significant differences were observed between electrical impedance tomography- and compliance-based optimal positive end-expiratory pressure. Peak and mean airway, plateau, and driving pressures increased 1 h after prone positioning compared with those in the supine position. In addition, the centre of ventilation for balance in ventilation between the ventral and dorsal regions improved. CONCLUSION: The prone position required higher positive end-expiratory pressure than the supine position in mechanically ventilated infants under general anesthesia. EIT is a promising tool to find the optimal positive end-expiratory pressure, which needs to be individualized.


Asunto(s)
Anestesia General , Impedancia Eléctrica , Respiración con Presión Positiva , Tomografía , Humanos , Respiración con Presión Positiva/métodos , Anestesia General/métodos , Posición Prona/fisiología , Posición Supina , Lactante , Estudios Prospectivos , Masculino , Femenino , Tomografía/métodos , Recién Nacido
11.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000913

RESUMEN

There is an extensive need for surface sensors for applications such as tactile sensing for robotics, damage and strain detection for structural health monitoring and leak detection for buried structures. One type of surface sensor is electrical impedance tomography (EIT)-based sensing skins, which use electrically conductive coatings applied on the object's surface to monitor physical or chemical phenomena on the surface. In this article, we propose a sensing skin with two electrically coupled layers separated by an insulator. Based on electrical measurements, the spatial distribution of the electrical coupling between the layers is estimated. This coupling is sensitive to both the pressure distribution on the surface and water entering between the layers through a leak. We present simulations and experimental studies to evaluate the feasibility of the proposed method for pressure sensing and leak detection. The results support the feasibility of the proposed method for both of these applications.

12.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39338732

RESUMEN

Flexible electronic skin (e-skin) can enable robots to have sensory forms similar to human skin, enhancing their ability to obtain more information from touch. The non-invasive nature of electrical impedance tomography (EIT) technology allows electrodes to be arranged only at the edges of the skin, ensuring the stretchability and elasticity of the skin's interior. However, the image quality reconstructed by EIT technology has deteriorated in multi-touch identification, where it is challenging to clearly reflect the number of touchpoints and accurately size the touch areas. This paper proposed an EIT-based flexible tactile sensor that employs self-made hydrogel material as the primary sensing medium. The sensor's structure, fabrication process, and tactile imaging principle were elaborated. To improve the quality of image reconstruction, the fast iterative shrinkage-thresholding algorithm (FISTA) was embedded into the EIDORS toolkit. The performances of the e-skin in aspects of assessing the touching area, quantitative force sensing and multi-touch identification were examined. Results showed that the mean intersection over union (MIoU) of the reconstructed images was improved up to 0.84, and the tactile position can be accurately imaged in the case of the number of the touchpoints up to seven (larger than two to four touchpoints in existing studies), proving that the combination of the proposed sensor and imaging algorithm has high sensitivity and accuracy in multi-touch tactile sensing. The presented e-skin shows potential promise for the application in complex human-robot interaction (HRI) environments, such as prosthetics and wearable devices.


Asunto(s)
Algoritmos , Impedancia Eléctrica , Hidrogeles , Tomografía , Tacto , Dispositivos Electrónicos Vestibles , Humanos , Tacto/fisiología , Tomografía/métodos , Tomografía/instrumentación , Hidrogeles/química , Procesamiento de Imagen Asistido por Computador/métodos , Piel/diagnóstico por imagen , Piel/química , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
13.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894168

RESUMEN

In medical imaging, detecting tissue anomalies is vital for accurate diagnosis and effective treatment. Electrical impedance tomography (EIT) is a non-invasive technique that monitors the changes in electrical conductivity within tissues in real time. However, the current challenge lies in simply and accurately reconstructing multi-conductivity distributions. This paper introduces a layered fusion framework for EIT to enhance imaging in multi-conductivity scenarios. The method begins with pre-imaging and extracts the main object from the fuzzy image to form one layer. Then, the voltage difference in the other layer, where the local anomaly is located, is estimated. Finally, the corresponding conductivity distribution is established, and multiple layers are fused to reconstruct the multi-conductivity distribution. The simulation and experimental results demonstrate that compared to traditional methods, the proposed method significantly improves multi-conductivity separation, precise anomaly localization, and robustness without adding uncertain parameters. Notably, the proposed method has demonstrated exceptional accuracy in local anomaly detection, with positional errors as low as 1% and size errors as low as 33%, which significantly outperforms the traditional method with respective minimum errors of 9% and 228%. This method ensures a balance between the simplicity and accuracy of the algorithm. At the same time, it breaks the constraints of traditional linear methods, struggling to identify multi-conductivity distributions, thereby providing new perspectives for clinical EIT.

14.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065936

RESUMEN

Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications.


Asunto(s)
Impedancia Eléctrica , Pulmón , Tomografía , Humanos , Tomografía/métodos , Pulmón/diagnóstico por imagen , Monitoreo Fisiológico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , COVID-19/diagnóstico por imagen , COVID-19/diagnóstico , Algoritmos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico
15.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204964

RESUMEN

Total knee arthroplasty (TKA) is a well-established and successful treatment option for patients with end-stage osteoarthritis of the knee, providing high patient satisfaction. Robotic systems have been widely adopted to perform TKA in orthopaedic centres. The exact spatial positions of the femur and tibia are usually determined through pinned trackers, providing the surgeon with an exact illustration of the axis of the lower limb. The drilling of holes required for mounting the trackers creates weak spots, causing adverse events such as bone fracture. In the presented computational feasibility study, time differential electrical impedance tomography is used to locate the femur positions, thereby the difference in conductivity distribution between two distinct states s0 and s1 of the measured object is reconstructed. The overall approach was tested by simulating five different configurations of thigh shape and considered tissue conductivity distributions. For the cylinder models used for verification and reference, the reconstructed position deviated by about ≈1 mm from the actual bone centre. In case of models mimicking a realistic cross section of the femur position deviated between 7.9 mm 24.8 mm. For all models, the bone axis was off by about φ=1.50° from its actual position.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Estudios de Factibilidad , Fémur , Procedimientos Quirúrgicos Robotizados , Tibia , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Fémur/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Tibia/cirugía , Impedancia Eléctrica
16.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257426

RESUMEN

This paper introduces a sensitivity matrix decomposition regularization (SMDR) method for electric impedance tomography (EIT). Using k-means clustering, the EIT-reconstructed image can be divided into four clusters, derived based on image features, representing posterior information. The sensitivity matrix is then decomposed into distinct work areas based on these clusters. The elimination of smooth edge effects is achieved through differentiation of the images from the decomposed sensitivity matrix and further post-processing reliant on image features. The algorithm ensures low computational complexity and avoids introducing extra parameters. Numerical simulations and experimental data verification highlight the effectiveness of SMDR. The proposed SMDR algorithm demonstrates higher accuracy and robustness compared to the typical Tikhonov regularization and the iterative penalty term-based regularization method (with an improvement of up to 0.1156 in correlation coefficient). Moreover, SMDR achieves a harmonious balance between image fidelity and sparsity, effectively addressing practical application requirements.

17.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39338640

RESUMEN

Bioimpedance imaging aims to generate a 3D map of the resistivity and permittivity of biological tissue from multiple impedance channels measured with electrodes applied to the skin. When the electrodes are distributed around the body (for example, by delineating a cross section of the chest or a limb), bioimpedance imaging is called electrical impedance tomography (EIT) and results in functional 2D images. Conventional EIT systems rely on individually cabling each electrode to master electronics in a star configuration. This approach works well for rack-mounted equipment; however, the bulkiness of the cabling is unsuitable for a wearable system. Previously presented cooperative sensors solve this cabling problem using active (dry) electrodes connected via a two-wire parallel bus. The bus can be implemented with two unshielded wires or even two conductive textile layers, thus replacing the cumbersome wiring of the conventional star arrangement. Prior research demonstrated cooperative sensors for measuring bioimpedances, successfully realizing a measurement reference signal, sensor synchronization, and data transfer though still relying on individual batteries to power the sensors. Subsequent research using cooperative sensors for biopotential measurements proposed a method to remove batteries from the sensors and have the central unit supply power over the two-wire bus. Building from our previous research, this paper presents the application of this method to the measurement of bioimpedances. Two different approaches are discussed, one using discrete, commercially available components, and the other with an application-specific integrated circuit (ASIC). The initial experimental results reveal that both approaches are feasible, but the ASIC approach offers advantages for medical safety, as well as lower power consumption and a smaller size.


Asunto(s)
Impedancia Eléctrica , Electrodos , Dispositivos Electrónicos Vestibles , Humanos , Suministros de Energía Eléctrica , Tomografía/instrumentación , Tomografía/métodos , Diseño de Equipo , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
18.
J Clin Monit Comput ; 38(1): 89-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37863862

RESUMEN

PURPOSE: This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS: PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS: Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS: In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER: CRD 42021218306, 30/01/2023.


Asunto(s)
Respiración con Presión Positiva , Tomografía Computarizada por Rayos X , Humanos , Impedancia Eléctrica , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración con Presión Positiva/métodos , Oxígeno
19.
J Clin Monit Comput ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196479

RESUMEN

There is no universally accepted method for positive end expiratory pressure (PEEP) titration approach for patients on spontaneous mechanical ventilation (SMV). Electrical impedance tomography (EIT) guided PEEP-titration has shown promising results in controlled mechanical ventilation (CMV), current implemented algorithm for PEEP titration (based on regional compliance measurements) is not applicable in SMV. Regional peak flow (RPF, defined as the highest inspiratory flow rate based on EIT at a certain PEEP level) is a new method for quantifying regional lung mechanics designed for SMV. The objective is to study whether RPF by EIT is a feasible method for PEEP titration during SMV. Single EIT measurements were performed in COVID-19 ARDS patients on SMV. Clinical (i.e., tidal volume, airway occlusion pressure, end-tidal CO2) and mechanical (cyclic alveolar recruitment, recruitment, cumulative overdistension (OD), cumulative collapse (CL), pendelluft, and PEEP) outcomes were determined by EIT at several pre-defined PEEP thresholds (1-10% CL and the intersection of the OD and CL curves) and outcomes at all thresholds were compared to the outcomes at baseline PEEP. In total, 25 patients were included. No significant and clinically relevant differences were found between thresholds for tidal volume, end-tidal CO2, and P0.1 compared to baseline PEEP; cyclic alveolar recruitment rates changed by -3.9% to -37.9% across thresholds; recruitment rates ranged from - 49.4% to + 79.2%; cumulative overdistension changed from - 75.9% to + 373.4% across thresholds; cumulative collapse changed from 0% to -94.3%; PEEP levels from 10 up to 14 cmH2O were observed across thresholds compared to baseline PEEP of 10 cmH2O. A threshold of approximately 5% cumulative collapse yields the optimum compromise between all clinical and mechanical outcomes. EIT-guided PEEP titration by the RPF approach is feasible and is linked to improved overall lung mechanics) during SMV using a threshold of approximately 5% CL. However, the long-term clinical safety and effect of this approach remain to be determined.

20.
Medicina (Kaunas) ; 60(3)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38541220

RESUMEN

Background and objectives: Respiratory distress syndrome (RDS) frequently necessitates respiratory support. While non-invasive methods are typically the preferred approach, mechanical ventilation becomes necessary for patients with insufficient response. Our study aimed to compare two common respiratory support modes, volume-targeted mechanical ventilation and non-invasive ventilation continuous positive airway pressure (CPAP) and high-flow nasal cannula (HFNC), using electrical impedance tomography. Materials and Methods: Infants with very low birth weight and gestational ages of less than 32 weeks were eligible for inclusion in the study. All enrolled infants were beyond the transitional period (>72 h of age). The infants were divided into two groups: infants receiving invasive respiratory support through an endotracheal tube and infants receiving non-invasive respiratory support. We used electrical impedance tomography to assess end-expiratory lung impedance (EELZ), DeltaZ, heterogeneity, and regional ventilation distribution. Patients were evaluated at 0, 30, and 60 min after assuming the supine position to examine potential time-related effects. Results: Our study initially enrolled 97 infants, and the final analysis included a cohort of 72 infants. Ventilated infants exhibited significantly larger EELZ compared to their non-invasive counterparts (p = 0.026). DeltaZ was also greater in the invasive respiratory support group (p < 0.001). Heterogeneity was higher in the non-invasive group and did not change significantly over time. The non-invasive group demonstrated significantly greater ventilation in the dependent lung areas compared to intubated patients (p = 0.005). Regional distribution in the left lung was lower than in the right lung in both groups; however, this difference was significantly more pronounced in intubated patients (p < 0.001). Conclusions: Our study revealed that volume-targeted mechanical ventilation results in higher EELZ and DeltaZ compared to spontaneously breathing infants receiving non-invasive respiratory support. However, lung heterogeneity was lower during mechanical ventilation. Our study also reaffirmed that spontaneous breathing promotes greater involvement of the dependent lung compared to mechanical ventilation.


Asunto(s)
Recien Nacido Prematuro , Respiración Artificial , Recién Nacido , Humanos , Impedancia Eléctrica , Pulmón , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA