Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurodegener Dis ; 13(2-3): 61-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24107444

RESUMEN

The presenilin(PS) genes harbor approximately 90% of the identified mutations linked to familial forms of Alzheimer's disease, and the presenilin (PS) proteins are essential components of the γ-secretase complex involved in the proteolytic cleavage of type I receptors, such as Notch and the amyloid precursor protein. Genetic analysis employing cell type-specific conditional knockout technology highlighted the importance of PS in the adult brain, including learning and memory, synaptic function and age-dependent neuronal survival. In the central synapse, PS regulates neurotransmitter release, short- and long-term synaptic plasticity and calcium homeostasis. However, the molecular mechanisms by which PS maintains these essential functions are less clear. Although many γ-secretase substrates have been identified, their physiological relevance is often unclear. The findings that nicastrin and PS conditional knockout mice exhibit similar deficits in memory and age-dependent neurodegeneration are consistent with the notion that γ-secretase-dependent activities of PS are required for the maintenance of memory and neuronal survival, though the γ-secretase physiological substrates, Notch receptors, are not targets of PS in the adult brain. Thus, despite of the intense interest in PS since its identification in 1995, more work is needed to define the molecular and cellular mechanisms by which PS controls brain functions and the dysfunction conferred by disease-causing mutations.


Asunto(s)
Enfermedad de Alzheimer/genética , Presenilinas/fisiología , Animales , Humanos
2.
J Neurosci ; 32(25): 8633-48, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723704

RESUMEN

Presenilins 1 and 2 (PS1 and PS2) are the catalytic subunits of the γ-secretase complex, and genes encoding mutant PS1 and PS2 variants cause familial forms of Alzheimer's disease. Lee et al. (2010) recently reported that loss of PS1 activity lead to impairments in autophagosomal function as a consequence of lysosomal alkalinization, caused by failed maturation of the proton translocating V0a1 subunit of the vacuolar (H+)-ATPase and targeting to the lysosome. We have reexamined these issues in mammalian cells and in brains of mice lacking PS (PScdko) and have been unable to find evidence that the turnover of autophagic substrates, vesicle pH, V0a1 maturation, or lysosome function is altered compared with wild-type counterparts. Collectively, our studies fail to document a role for presenilins in regulating cellular autophagosomal function. On the other hand, our transcriptome studies of PScdko mouse brains reveal, for the first time, a role for PS in regulating lysosomal biogenesis.


Asunto(s)
Autofagia/fisiología , Lisosomas/metabolismo , Presenilina-1/fisiología , Presenilina-2/fisiología , Presenilinas/fisiología , Animales , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Blastocisto/metabolismo , Western Blotting , Catepsina D/metabolismo , Línea Celular Tumoral , Células Cultivadas , Cartilla de ADN , Expresión Génica/fisiología , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Noqueados , Neuronas/metabolismo , Reacción en Cadena de la Polimerasa , Presenilina-1/genética , Presenilina-2/genética , Presenilinas/genética , ARN/biosíntesis , ARN/genética , ARN Interferente Pequeño/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Ann Neurol ; 69(1): 170-80, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21280087

RESUMEN

OBJECTIVE: The cleavage of amyloid precursor protein by γ-secretase is an important aspect of the pathogenesis of Alzheimer's disease. γ-Secretase also cleaves other membrane proteins (eg, Notch), which control cell development and homeostasis. Presenilin 1 and 2 are considered important determinants of the γ-secretase catalytic site. Our aim was to investigate whether γ-secretase can be important for microglial phagocytosis of Alzheimer's disease ß-amyloid. METHODS: We investigated the role of γ-secretase in microglia activity toward ß-amyloid phagocytosis in cell culture using γ-secretase inhibitors and small hairpin RNA and presenilin-deficient mice. RESULTS: We found that γ-secretase inhibitors impair microglial activity as measured in gene expression, protein levels, and migration ability, which resulted in a reduction of soluble ß-amyloid phagocytosis. Moreover, microglia deficient in presenilin 1 and 2 showed impairment in phagocytosis of soluble ß-amyloid. Dysfunction in the γ-secretase catalytic site led to an impairment in clearing insoluble ß-amyloid from brain sections taken from an Alzheimer's disease mouse model when compared to microglia from wild-type mice. INTERPRETATION: We suggest for the first time, a dual role for γ-secretase in Alzheimer's disease. One role is the cleavage of the amyloid precursor protein for pathologic ß-amyloid production and the other is to regulate microglia activity that is important for clearing neurotoxic ß-amyloid deposits. Further studies of γ-secretase-mediated cellular pathways in microglia may provide useful insights into the development of Alzheimer's disease and other neurodegenerative diseases, providing future avenues for therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/fisiología , Péptidos beta-Amiloides/biosíntesis , Placa Amiloide/patología , Presenilinas/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Macrófagos Peritoneales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/fisiología , Fagocitosis/fisiología , Placa Amiloide/metabolismo , Presenilinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transfección/métodos
4.
Neural Plast ; 2012: 272374, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792491

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated ß-amyloid (Aß) peptides. It is now recognized that soluble Aß oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aß is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of ß- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aß alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aß generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aß-producing enzymes suggest that Aß itself may have normal physiological functions which are disrupted by abnormal accumulation of Aß during AD pathology. This interpretation suggests that AD therapeutics targeting the ß- and γ-secretases should be developed to restore normal levels of Aß or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Inhibidores Enzimáticos/farmacología , Plasticidad Neuronal/fisiología , Sinapsis/enzimología , Sinapsis/fisiología , Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/fisiología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Presenilinas/genética , Presenilinas/fisiología
5.
Biochim Biophys Acta ; 1787(5): 335-44, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19268425

RESUMEN

Mitochondrial Ca(2+) accumulation is a tightly controlled process, in turn regulating functions as diverse as aerobic metabolism and induction of cell death. The link between Ca(2+) (dys)regulation, mitochondria and cellular derangement is particularly evident in neurodegenerative disorders, in which genetic models and environmental factors allowed to identify common traits in the pathogenic routes. We will here summarize: i) the current view of mechanisms and functions of mitochondrial Ca(2+) homeostasis, ii) the basic principles of organelle Ca(2+) transport, iii) the role of Ca(2+) in neuronal cell death, and iv) the new information on the pathogenesis of Alzheimer's, Huntington's and Parkinson's diseases, highlighting the role of Ca(2+) and mitochondria.


Asunto(s)
Calcio/fisiología , Muerte Celular/fisiología , Mitocondrias/fisiología , Degeneración Nerviosa/fisiopatología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Citosol/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Membranas Mitocondriales/fisiología , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Presenilinas/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
6.
Trends Genet ; 23(3): 140-50, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17280736

RESUMEN

Presenilin, the catalytic member of the gamma-secretase proteolytic complex, was discovered through its roles in generating Alzheimer's-disease-associated amyloid-beta peptides from the amyloid-beta precursor protein and in releasing the transcriptionally active domain of the receptor Notch. Recent work has revealed many additional cleavage substrates and interacting proteins, suggesting a diversity of roles for presenilin during development and adult life, some of which might contribute to Alzheimer's disease progression. Although many of these functions depend on the proteolytic activity of gamma-secretase, others are independent of its role as a protease. Here, we review recent data on candidate functions for presenilin and its interactors and on their potential significance in disease.


Asunto(s)
Presenilinas/fisiología , Transducción de Señal , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Calcio/metabolismo , Adhesión Celular , Humanos , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Presenilinas/metabolismo , Especificidad por Sustrato , Transcripción Genética , Proteínas tau/metabolismo
7.
Cell Mol Life Sci ; 66(9): 1534-55, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19189053

RESUMEN

Inhibiting the production of amyloid-beta by antagonising gamma-secretase activity is currently being pursued as a therapeutic strategy for Alzheimer's disease (AD). However, early pre-clinical studies have demonstrated that disruption of presenilin-dependent gamma-secretase alters many presenilin-dependent processes, leading to early lethality in several AD model organisms. Subsequently, transgenic animal studies have highlighted several gross developmental side effects arising from presenilin deficiency. Partial knockdown or tissue-specific knockout of presenilins has identified the skin, vascular and immune systems as very sensitive to loss of presenilin functions. A more appreciative understanding of presenilin biology is therefore demanded if gamma-secretase is to be pursued as a therapeutic target. Herein we review the current understanding of gamma-secretase complexes; their regulation, abundance of interacting partners and diversity of substrates. We also discuss regulation of the gamma-secretase complexes, with an emphasis on the functional role of presenilins in cell biology.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Presenilinas/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Modelos Biológicos , Presenilinas/química , Presenilinas/metabolismo , Transducción de Señal/fisiología , Especificidad por Sustrato
8.
Med Sci (Paris) ; 26(5): 516-21, 2010 May.
Artículo en Francés | MEDLINE | ID: mdl-20510151

RESUMEN

Neurodegenerative diseases are more and more prevalent in our aging societies. There is strong evidence that glycogen synthase kinase (GSK)-3b plays a crucial role in Alzheimer's disease (AD). Indeed, it is involved in the regulation of the two major neuropathological hallmarks present in the brains of AD patients. Interestingly, the kinase has been implicated in multiple cellular processes and linked with the pathogenesis and neuronal loss in several neurodegenerative diseases, including Parkinson's and Huntington's diseases, in which abnormally elevated levels of GSK-3b activity have been reported. In this review, we will provide an overview of the current data pointing out the convergent role of GSK-3b in the neuropathological pathways of these diseases. We will also discuss the rationale for the development of specific inhibitors with therapeutic potentials for such devastating human diseases.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/enzimología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/fisiología , Apoptosis/fisiología , Encéfalo/enzimología , Encéfalo/patología , Proteínas Portadoras/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Cuerpos de Lewy , Mitocondrias/fisiología , Modelos Neurológicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Ovillos Neurofibrilares/enzimología , Enfermedad de Parkinson/enzimología , Fosforilación , Placa Amiloide/enzimología , Presenilinas/fisiología , Inhibidores de Proteínas Quinasas/uso terapéutico , Procesamiento Proteico-Postraduccional , alfa-Sinucleína/fisiología , Proteínas tau/metabolismo
9.
Psychogeriatrics ; 10(3): 117-23, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20860566

RESUMEN

BACKGROUND: During intramembrane proteolysis of ß-amyloid protein precursor (ßAPP) by presenilin (PS)/γ-secretase, ε-cleavages at the membrane-cytoplasmic border precede γ-cleavages at the middle of the transmembrane domain. Generation ratios of Aß42, a critical molecule for Alzheimer's disease (AD) pathogenesis, and the major Aß40 species might be associated with ε48 and ε49 cleavages, respectively. Medicines to downregulate Aß42 production have been investigated by many pharmaceutical companies. Therefore, the ε-cleavages, rather than the γ-cleavage, might be more effective upstream targets for decreasing the relative generation of Aß42. Thus, one might evaluate compounds by analyzing the generation ratio of the ßAPP intracellular domain (AICD) species (ε-cleavage-derived), instead of that of Aß42. METHODS: Cell-free γ-secretase assays were carried out to observe de novo AICD production. Immunoprecipitation/MALDI-TOF MS analysis was carried out to detect the N-termini of AICD species. Aß and AICD species were measured by ELISA and immunoblotting techniques. RESULTS: Effects on the ε-cleavage by AD-associated pathological mutations around the ε-cleavage sites (i.e., ßAPP V642I, L648P and K649N) were analyzed. The V642I and L648P mutations caused an increase in the relative ratio of ε48 cleavage, as expected from previous reports. Cells expressing the K649N mutant, however, underwent a major ε-cleavage at the ε51 site. These results suggest that ε51, as well as ε48 cleavage, is associated with Aß42 production. Only AICDε51, though, and not Aß42 production, dramatically changed with modifications to the cell-free assay conditions. Interestingly, the increase in the relative ratio of the ε51 cleavage by the K649N mutation was not cancelled by these changes. CONCLUSION: Our current data show that the generation ratio of AICDε51 and Aß42 do not always change in parallel. Thus, to identify compounds that decrease the relative ratio of Aß42 generation, measurement of the relative level of Aß42-related AICD species (i.e., AICDε48 and AICDε51) might not be useful. Further studies to reveal how the ε-cleavage precision is decided are necessary before it will be possible to develop drugs targeting ε-cleavage as a means for decreasing Aß42 production.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Fragmentos de Péptidos/genética , Presenilinas/fisiología , Anciano , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Sistema Libre de Células , Citoplasma/metabolismo , Análisis Mutacional de ADN , Humanos , Fragmentos de Péptidos/metabolismo
10.
J Neurosci ; 28(44): 11421-31, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18971484

RESUMEN

Cell cycle markers have been shown to be upregulated and proposed to lead to apoptosis of postmitotic neurons in Alzheimer's disease (AD). Presenilin (PS) plays a critical role in AD pathogenesis, and loss-of-function studies in mice established a potent effect of PS in cell proliferation in peripheral tissues. Whether PS has a similar activity in the neuronal cell cycle has not been investigated. PS exhibits gamma-secretase-dependent and -independent functions; the former requires aspartate 257 (D257) as part of the active site, and the latter involves the hydrophilic loop domain encoded by exon 10. We used two novel mouse models, one expressing the PS1 D257A mutation on a postnatal PS conditional knock-out background and the other deleting exon 10 of PS1, to dissect the gamma-secretase-dependent and -independent activities of PS in the adult CNS. Whereas gamma-secretase plays a dominant role in neuronal survival, our studies reveal potent neuronal cell cycle regulation mediated by the PS1 hydrophilic loop. Although neurons expressing cell cycle markers do not directly succumb to apoptosis, they are more vulnerable under stress conditions. Importantly, our data identify a novel pool of cytoplasmic p53 as a downstream mediator of this cellular vulnerability. These results support a model whereby the PS gamma-secretase activity is essential in maintaining neuronal viability, and the PS1 loop domain modulates neuronal homeostasis through cell cycle and cytoplasmic p53 control.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ciclo Celular/fisiología , Eliminación de Gen , Neuronas/fisiología , Presenilinas/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ciclo Celular/genética , Muerte Celular/genética , Muerte Celular/fisiología , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/enzimología , Presenilinas/genética
11.
Neurochem Int ; 54(2): 84-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19114068

RESUMEN

As one of the earliest pathologic changes, the aberrant re-expression of many cell cycle-related proteins and inappropriate cell cycle control in specific vulnerable neuronal populations in Alzheimer's disease (AD) is emerging as an important component in the pathogenesis leading to AD and other neurodegenerative diseases. These events are clearly representative of a true cell cycle, rather than epiphenomena of other processes since, in AD and other neurodegenerative diseases, there is a true mitotic alteration that leads to DNA replication. While the exact role of cell cycle re-entry is unclear, recent studies using cell culture and animal models strongly support the notion that the dysregulation of cell cycle in neurons leads to the development of AD-related pathology such as hyperphosphorylation of tau and amyloid-beta deposition and ultimately causes neuronal cell death. Importantly, cell cycle re-entry is also evident in mutant amyloid-beta precursor protein and tau transgenic mice and, as in human disease, occurs prior to the development of the pathological hallmarks, neurofibrillary tangles and amyloid-beta plaques. Therefore, the study of aberrant cell cycle regulation in model systems, both cellular and animal, may provide extremely important insights into the pathogenesis of AD and also serve as a means to test novel therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Ciclo Celular/fisiología , Degeneración Nerviosa/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/fisiología , Muerte Celular/fisiología , Humanos , Estrés Oxidativo/fisiología , Presenilinas/metabolismo , Presenilinas/fisiología , Proteínas tau/metabolismo , Proteínas tau/fisiología
12.
Cell Rep ; 27(4): 1293-1306.e6, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018141

RESUMEN

Gene expression profiles of more than 10,000 individual microglial cells isolated from cortex and hippocampus of male and female AppNL-G-F mice over time demonstrate that progressive amyloid-ß accumulation accelerates two main activated microglia states that are also present during normal aging. Activated response microglia (ARMs) are composed of specialized subgroups overexpressing MHC type II and putative tissue repair genes (Dkk2, Gpnmb, and Spp1) and are strongly enriched with Alzheimer's disease (AD) risk genes. Microglia from female mice progress faster in this activation trajectory. Similar activated states are also found in a second AD model and in human brain. Apoe, the major genetic risk factor for AD, regulates the ARMs but not the interferon response microglia (IRMs). Thus, the ARMs response is the converging point for aging, sex, and genetic AD risk factors.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/patología , Placa Amiloide/patología , Envejecimiento/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilinas/fisiología , Caracteres Sexuales
13.
FASEB J ; 21(10): 2368-78, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17428965

RESUMEN

It has been shown that presenilin is involved in maintaining Ca2+ homeostasis in neurons, including regulating endoplasmic reticulum (ER) Ca2+ storage. From studies of primary cultures and cell lines, however, its role in stress-induced responses is still controversial. In the present study we analyzed the effects of presenilin mutations on membrane currents and synaptic functions in response to stress using an in vivo preparation. We examined voltage-gated K+ and Ca2+ currents at the Drosophila larval neuromuscular junction (NMJ) with voltage-clamp recordings. Our data showed that both currents were generally unaffected by loss-of-function or Alzheimer's disease (AD) -associated presenilin mutations under normal or stress conditions induced by heat shock (HS) or ER stress. In larvae expressing the mutant presenilins, prolonged Ca2+ tail current, reflecting slower deactivation kinetics of Ca2+ channels, was observed 1 day after stress treatments were terminated. It was further demonstrated that the L-type Ca2+ channel was specifically affected under these conditions. Moreover, synaptic plasticity at the NMJ was reduced in larvae expressing the mutant presenilins. At the behavioral level, memory in adult flies was impaired in the presenilin mutants 1 day after HS. The results show that presenilin function is important during the poststress period and its impairment contributes to memory dysfunction observed during adaptation to normal conditions after stress. Our findings suggest a new stress-related mechanism by which presenilin may be implicated in the neuropathology of AD.


Asunto(s)
Drosophila/fisiología , Unión Neuromuscular/fisiología , Presenilinas/fisiología , Enfermedad de Alzheimer/fisiopatología , Animales , Señalización del Calcio , Clonación Molecular , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Heterocigoto , Homocigoto , Humanos , Larva/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Presenilinas/genética , Proteínas Recombinantes/farmacología , Mapeo Restrictivo
14.
Neurodegener Dis ; 5(3-4): 160-2, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18322378

RESUMEN

BACKGROUND/AIMS: Following extracellular shedding, transmembrane domains (TMs) of beta-amyloid precursor protein (betaAPP) and Notch-1 undergo proteolysis by presenilin (PS)/gamma-secretase at least at two sites, near the middle of the TM (gamma-/S4 cleavage) and at the interface between cytosol and the TM (epsilon-/S3 cleavage), releasing Alzheimer disease (AD)-associated beta-amyloid (Abeta)/Notch-1beta (Nbeta) and betaAPP intracellular cytoplasmic domain (AICD)/Notch-1 intracellular cytoplasmic domain (NICD). Inhibiting PS/gamma-secretase activity is an essential approach to AD treatment, but it also decreases NICD production, which may cause severe side effects. Therefore, it is important to investigate the differences between the cleavages at the two sites. Gamma-/S4 and epsilon-cleavages have diversity, and produce a number of Abeta/Nbeta and AICD species. S3 cleavage diversity has been recently identified. It is significant that each cleavage occurs with strict precision, not randomly. METHODS: Biochemical analysis of cultured cells was performed to explore the processing mechanisms. RESULTS: Familial AD-associated PS1 mutations as well as a subset of nonsteroidal anti-inflammatory drugs cause similar changes in gamma-/S4 cleavage precision, suggesting a common process for these cleavages near the middle of the TM. While the precision of the epsilon-cleavage is drastically affected by physiological factors, that of epsilon-/S3 cleavage is not. CONCLUSION: The processes of the two cleavages occurring in different portions of TMs may be diverse, thus representing possible targets for anti-AD therapeutics to selectively reduce Abeta.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Péptidos beta-Amiloides/biosíntesis , Citoplasma/metabolismo , Presenilinas/fisiología , Procesamiento Proteico-Postraduccional , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Citoplasma/genética , Humanos , Líquido Intracelular/metabolismo , Líquido Intracelular/fisiología , Presenilinas/genética , Procesamiento Proteico-Postraduccional/genética , Estructura Terciaria de Proteína/genética
15.
Physiol Behav ; 92(1-2): 93-7, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17568632

RESUMEN

Presenilin proteins, mutated forms of which cause early onset familial Alzheimer's disease, are capable of modulating various cell signal transduction pathways, the most extensively studied of which has been intracellular calcium signalling. Disease causing presenilin mutations can potentiate inositol(1,4,5)trisphosphate (InsP3) mediated endoplasmic reticulum release due to calcium overload in this organelle, as well as attenuate capacitative calcium entry. Our own studies have shown a novel function for presenilins that involves regulation of acetylcholine muscarinic receptor-stimulated phospholipase C upstream of InsP3 regulated calcium release. This article reviews the mechanisms by which presenilins modulate intracellular calcium signalling and the role that deregulated calcium homeostasis could play in the pathogenesis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Señalización del Calcio/fisiología , Presenilinas/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Fosfolipasas de Tipo C/fisiología
16.
J Alzheimers Dis ; 10(2-3): 277-90, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17119293

RESUMEN

Molecular genetic studies of familial Alzheimer's disease by 1995 had clearly implicated three proteins as critical to Alzheimer's disease (AD), the amyloid-beta protein precursor (AbetaPP) and the two homologous presenilins, PS-1 and PS-2. To account for the roles of these proteins in AD, we had proposed that as an early and critical step in the mechanisms that lead to AD, the PS on the surface of a brain cell engages in a specific receptor-ligand intercellular interaction with AbetaPP on the surface of a neighboring cell. This cell-cell interaction is required to trigger off a cascade of processes that lead to the production of amyloid-beta (Abeta) from AbetaPP, leading to AD. At about this time, however, many established AD researchers had obtained data that appeared to disagree with our proposed mechanism. Their immediate objections to our proposal were based on their conclusions that 1) The PS proteins were exclusively intracellular, and were not expressed at the cell surface, and 2) The topography of the PS proteins in intracellular membranes exhibits either 6 or 8-TM spanning domains, not 7. Here we discuss the evidence for the 6-TM, 7-TM, 8-TM and other models of PS topography and offer possibilities for the differences in interpretation of the various sets of data. We review the experimental demonstration of the cell-surface expression and the 7-TM structure of PS, the functional consequences of this structure, and the findings that PS-1 and PS-2 are members of the superfamily of 7-TM heterotrimeric G-protein coupled receptors (GPCRs).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Presenilinas/fisiología , Enfermedad de Alzheimer/inmunología , Anticuerpos Monoclonales/inmunología , Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Presenilina-1/inmunología , Presenilina-1/metabolismo , Presenilina-2/inmunología , Presenilina-2/metabolismo , Presenilinas/inmunología , Presenilinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
J Alzheimers Dis ; 52(4): 1177-87, 2016 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-27079701

RESUMEN

Research into Alzheimer's disease pathology and treatment has often focused on presenilin proteins. These proteins provide the key catalytic activity of the γ-secretase complex in the cleavage of amyloid-ß precursor protein and resultant amyloid tangle deposition. Over the last 25 years, screening novel drugs to control this aberrant proteolytic activity has yet to identify effective treatments for the disease. In the search for other mechanisms of presenilin pathology, several studies have demonstrated that mammalian presenilin proteins also act in a non-proteolytic role as a scaffold to co-localize key signaling proteins. This role is likely to represent an ancestral presenilin function, as it has been described in genetically distant species including non-mammalian animals, plants, and a simple eukaryotic amoeba Dictyostelium that diverged from the human lineage over a billion years ago. Here, we review the non-catalytic scaffold role of presenilin, from mammalian models to other biomedical models, and include recent insights using Dictyostelium, to suggest that this role may provide an early evolutionary function of presenilin proteins.


Asunto(s)
Presenilinas/fisiología , Animales , Evolución Biológica , Dictyostelium/metabolismo , Mamíferos/metabolismo , Regiones de Fijación a la Matriz/fisiología , Ratones , Transducción de Señal/fisiología
19.
Genetics ; 201(4): 1453-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26500256

RESUMEN

Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Proteínas de la Membrana/fisiología , Mitocondrias/fisiología , Presenilinas/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/genética , Mitocondrias/ultraestructura , Mutación , Presenilinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA