Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Handb Exp Pharmacol ; 277: 117-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318326

RESUMO

Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/química , Descoberta de Drogas/métodos , Produtos Biológicos/análise , Produtos Biológicos/química , Cromatografia Líquida , Metabolômica
2.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298733

RESUMO

Esquamosan, a new furofuran lignan, has been isolated by bio-guided assays from the methanolic extract of the leaves of Annona squamosa L., and its structure was elucidated by spectroscopic methods. Esquamosan inhibited the rat aortic ring contraction evoked by phenylephrine in a concentration-dependent manner and showed an inhibitory effect on vasocontraction of the depolarized aorta with high-concentration potassium. The vasorelaxant effect by esquamosan could be attributed mainly to the inhibition of calcium influx from extracellular space through voltage-dependent calcium channels or receptor-operated Ca2+ channels and also partly mediated through the increased release of NO from endothelial cells. The ability of esquamosan to modify the vascular reactivity of rat aortic rings incubated with high glucose (D-glucose 55 mM) was then evaluated, and this furofuran lignan reverted the endothelium-dependent impairment effect of high glucose in rat aortic rings. The antioxidant capacity of esquamosan was assessed using DPPH and FRAP assays. Esquamosan exhibited a similar antioxidant capacity compared to ascorbic acid, which was used as a positive control. In conclusion, this lignan showed a vasorelaxant effect, free radical scavenging capacity, and potential reductive power, suggesting its potential beneficial use to treat complex cardiometabolic diseases due to free radical-mediated diseases and its calcium antagonist effect.


Assuntos
Annona , Annonaceae , Lignanas , Ratos , Animais , Vasodilatadores/farmacologia , Lignanas/farmacologia , Antioxidantes/farmacologia , Cálcio/farmacologia , Células Endoteliais , Aorta Torácica , Vasodilatação , Endotélio Vascular
3.
Metabolomics ; 18(3): 17, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235054

RESUMO

BACKGROUND: Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW: This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW: The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.


Assuntos
Organismos Aquáticos , Metabolômica , Organismos Aquáticos/metabolismo , Descoberta de Drogas , Ecossistema , Humanos , Metabolômica/métodos , Plantas
4.
Planta Med ; 88(9-10): 814-825, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35304734

RESUMO

The isolation of a compound from a natural source involves many organic and mostly toxic solvents for extraction and purification. Natural deep eutectic solvents have been shown to be efficient options for the extraction of natural products. They have the advantage of being composed of abundantly available common primary metabolites, being nontoxic and environmentally safe solvents. The aim of this study was to develop a natural deep eutectic solvent-based extraction method for galanthamine, an important therapeutic agent for the treatment of Alzheimer's disease. This alkaloid can be produced by synthesis or by extraction from Narcissus bulbs. To develop an efficient extraction method, a number of different natural deep eutectic solvents was first tested for their solubilization capacity of galanthamine bromide salt. Promising results were obtained for ionic liquids, as well as some amphoteric and acidic natural deep eutectic solvents. In a two-cycle extraction process, the best solvents were tested for the extraction of galanthamine from bulbs. The ionic liquids produced poor yields, and the best results were obtained with some acid and sugar mixtures, among which malic acid-sucrose-water (1 : 1 : 5) proved to be the best, showing similar yields to that of the exhaustive Soxhlet extraction with methanol. Furthermore, the natural deep eutectic solvent was more selective for galanthamine.


Assuntos
Alcaloides , Líquidos Iônicos , Narcissus , Alcaloides/metabolismo , Solventes Eutéticos Profundos , Galantamina/metabolismo , Líquidos Iônicos/metabolismo , Solventes/metabolismo
5.
J Chem Ecol ; 47(6): 564-576, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881708

RESUMO

Based on the hypothesis that the variation of the metabolomes of latex is a response to selective pressure and should thus be affected differently from other organs, their variation could provide an insight into the defensive chemical selection of plants. Metabolic profiling was used to compare tissues of three Euphorbia species collected in diverse regions. The metabolic variation of latexes was much more limited than that of other organs. In all the species, the levels of polyisoprenes and terpenes were found to be much higher in latexes than in leaves and roots of the corresponding plants. Polyisoprenes were observed to physically delay the contact of pathogens with plant tissues and their growth. A secondary barrier composed of terpenes in latex and in particular, 24-methylenecycloartanol, exhibited antifungal activity. These results added to the well-known role of enzymes also present in latexes, show that these are part of a cooperative defense system comprising biochemical and physical elements.


Assuntos
Euphorbia/metabolismo , Euphorbia/microbiologia , Geografia , Herbivoria , Látex/metabolismo , Metabolômica , Euphorbia/fisiologia , Especificidade da Espécie
6.
Planta Med ; 87(12-13): 1032-1044, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237788

RESUMO

Despite the extensive studies on latex, some fundamental questions on their chemical specialization and the factors influencing this specialization have yet to be investigated. To address this issue, latexes and their bearing tissues from diverse species were profiled by 1HNMR and GC-MS. Additionally, the antiherbivory activity of these materials was tested against thrips (Frankliniella occidentalis Pergande, 1895). The multivariate data analysis showed a clear separation between latexes and leaves from the same species. Conversely, the chemical profiles of latexes from different species were highly similar, that is, they displayed much less metabolic species-specificity. These shared chemical profiles of latexes were reflected in their overall higher mortality index (80.4% ± 7.5) against thrips compared with their bearing tissues (55.5% ± 14.9). The metabolites correlated to the antiherbivory activity of latexes were triterpenoids and steroids. However, the activity could not be attributed to any single terpenoid. This discrepancy and the reduction of the latex activity after fractionation suggested a complementary effect of the compounds when in a mixture as represented by the latex. Additionally, aqueous fractions of several latexes were found to possess simple spectra, even with only 1 metabolite. These metabolites were determined to be organic acids that might be involved in the modulation of the rate of latex coagulation, potentially increasing the sealing and trapping effects of the latex.


Assuntos
Tisanópteros , Animais , Herbivoria , Látex , Folhas de Planta , Plantas
8.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946576

RESUMO

Some medicines are poorly soluble in water. For tube feeding and parenteral administration, liquid formulations are required. The discovery of natural deep eutectic solvents (NADES) opened the way to potential applications for liquid drug formulations. NADES consists of a mixture of two or more simple natural products such as sugars, amino acids, organic acids, choline/betaine, and poly-alcohols in certain molar ratios. A series of NADES with a water content of 0-30% (w/w) was screened for the ability to solubilize (in a stable way) some poorly water-soluble pharmaceuticals at a concentration of 5 mg/mL. The results showed that NADES selectively dissolved the tested drugs. Some mixtures of choline-based NADES, acid-neutral or sugars-based NADES could dissolve chloral hydrate (dissociated in water), ranitidine·HCl (polymorphism), and methylphenidate (water insoluble), at a concentration of up to 250 mg/mL, the highest concentration tested. Whereas a mixture of lactic-acid-propyleneglycol could dissolve spironolacton and trimethoprim at a concentration up to 50 and 100 mg/mL, respectively. The results showed that NADES are promising solvents for formulation of poorly water-soluble medicines for the development of parenteral and tube feeding administration of non-water-soluble medicines. The chemical stability and bioavailability of these drug in NADES needs further studies.


Assuntos
Produtos Biológicos/química , Composição de Medicamentos , Preparações Farmacêuticas/química , Solventes/química , Betaína/química , Colina/química , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Solubilidade
9.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499348

RESUMO

Mass spectrometry-based molecular imaging has been utilized to map the spatial distribution of target metabolites in various matrixes. Among the diverse mass spectrometry techniques, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is the most popular for molecular imaging due to its powerful spatial resolution. This unparalleled high resolution, however, can paradoxically act as a bottleneck when the bio-imaging of large areas, such as a whole plant, is required. To address this issue and provide a more versatile tool for large scale bio-imaging, direct analysis in real-time-time of flight-mass spectrometry (DART-TOF-MS), an ambient ionization MS, was applied to whole plant bio-imaging of a medicinal plant, Ephedrae Herba. The whole aerial part of the plant was cut into 10-20 cm long pieces, and each part was further cut longitudinally to compare the contents of major ephedra alkaloids between the outer surface and inner part of the stem. Using optimized DART-TOF-MS conditions, molecular imaging of major ephedra alkaloids of the whole aerial part of a single plant was successfully achieved. The concentration of alkaloids analyzed in this study was found to be higher on the inner section than the outer surface of stems. Moreover, side branches, which are used in traditional medicine, represented a far higher concentration of alkaloids than the main stem. In terms of the spatial metabolic distribution, the contents of alkaloids gradually decreased towards the end of branch tips. In this study, a fast and simple macro-scale MS imaging of the whole plant was successfully developed using DART-TOF-MS. This application on the localization of secondary metabolites in whole plants can provide an area of new research using ambient ionization mass spectroscopy and an unprecedented macro-scale view of the biosynthesis and distribution of active components in medicinal plants.


Assuntos
Alcaloides/metabolismo , Ephedra/metabolismo , Espectrometria de Massas/métodos , Plantas Medicinais/metabolismo , Efedrina/análogos & derivados , Efedrina/metabolismo , Espectrometria de Massas/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Componentes Aéreos da Planta/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Crit Rev Food Sci Nutr ; 60(15): 2564-2592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31407921

RESUMO

The principles of 'green chemistry' are gaining importance in agri-food sector due to the need to reduce pollution from toxic chemicals, make industrial processes safer and more sustainable, and to offer 'clean-labeled products' required by the consumers. The application of natural deep eutectic solvents (NADES) - natural product-based green liquids is considered the promising alternative to conventional organic solvents. This review is intended to summarize and discuss recent advances related to physicochemical properties of NADES, their applications, compatibility with analytic techniques and toxicological profile, pointing out the challenges and necessary improvements for their wider utilization in agri-food sector. NADES allow extraction of wide range of food compounds and they are proven to be convenient for food-related applications. However, their potential for industrial scale-up utilization is not completely investigated. Examined NADES are readily biodegradable, but only preliminary studies on NADES toxicity which include limited number of NADES molecules are available. Apart from fundamental research dealing with NADES formation and the nature of the interactions and structure underpinning the liquid phase formation, the question of purity of NADES obtained by different synthetic methodologies need to be addressed in the future. Data on physicochemical properties of synthetized NADES are still needed as they are relevant for industrial applications.


Assuntos
Produtos Biológicos , Indústria Alimentícia , Química Verde , Solventes , Produtos Biológicos/química , Humanos , Solventes/química
11.
J Chem Ecol ; 46(8): 745-755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32020484

RESUMO

Abiotic and biotic properties of soil can influence growth and chemical composition of plants. Although it is well-known that soil microbial composition can vary greatly spatially, how this variation affects plant chemical composition is poorly understood. We grew genetically identical Jacobaea vulgaris in sterilized soil inoculated with live soil collected from four natural grasslands and in 100% sterilized soil. Within each grassland we sampled eight plots, totalling 32 different inocula. Two samples per plot were collected, leading to three levels of spatial variation: within plot, between and within grasslands. The leaf metabolome was analysed with 1H Nuclear magnetic resonance spectroscopy (NMR) to investigate if inoculation altered the metabolome of plants and how this varied between and within grasslands. Inoculation led to changes in metabolomics profiles of J. vulgaris in two out of four sites. Plants grown in sterilized and inoculated soils differed in concentrations of malic acid, tyrosine, trehalose and two pyrrolizidine alkaloids (PA). Metabolomes of plants grown in inoculated soils from different sites varied in glucose, malic acid, trehalose, tyrosine and in one PA. The metabolome of plants grown in soils with inocula from the same site was more similar than with inocula from distant sites. We show that soil influences leaf metabolomes. Performance of aboveground insects often depends on chemical composition of plants. Hence our results imply that soil microbial communities, via affecting aboveground plant metabolomes, can impact aboveground plant-insect food chains but that it is difficult to make general predictions due to spatial variation in soil microbiomes.


Assuntos
Asteraceae/metabolismo , Metaboloma , Microbiologia do Solo , Asteraceae/genética , Microbiota , Folhas de Planta/metabolismo
12.
Molecules ; 25(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023899

RESUMO

Natural deep eutectic solvents (NADES) are a type of ionic liquid (IL) or deep eutectic solvent (DES), the ingredients of which are exclusively natural products (non-toxic and environmentally friendly). Here, we explore the potential of NADES as an alternative to conventional organic solvents (e.g., aqueous methanol or ethanol) for the extraction of flavonoids from Scutellaria baicalensis stem bark to investigate their extractability depending on structural variation. Four NADES, each containing citric acid in combination with ß-alanine, glucose, xylitol, or proline (at a molar ratio of 1:1), and a variable amount of water, were used to extract the flavonoid aglycones: baicalein (1), scutellarein (3), wogonin (5), and oroxylin A (7), and their glycosides, baicalin (2), scutellarin (4), wogonoside (6) and oroxyloside (8) from the powdered bark of S. baicalensis. The chemical profile and yield of the extracts were determined using HPTLC and HPLC. The extractability of individual flavonoids was found to be influenced by the concentration of water (20-60%, w/w) in the NADES. Among the tested flavonoids, the extraction yield of baicalein (1), scutellarein (3), wogonin (5), oroxylin A (7) with NADES was 2 to 6 times that of aqueous methanol. However, the amount of their corresponding glycosides (baicalin (2), wogonoside (6) and oroxyloside (8)) extracted with NADES was only 1.5-1.8 times higher than with aqueous methanol. Interestingly, the more hydrophilic glycosides were less extracted than their corresponding aglycones despite the high hydrophilicity of the NADES. These results prove that NADES may be used for extraction of compounds with a wide range of hydrophilicity.


Assuntos
Ácido Cítrico/química , Flavonoides/análise , Scutellaria baicalensis/química , Solventes/química , Água/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Glucose/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Extratos Vegetais/química , Prolina/química , Xilitol/química , beta-Alanina/química
13.
Metabolomics ; 15(3): 27, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830464

RESUMO

INTRODUCTION: The increase in multidrug resistance and lack of efficacy in malaria therapy has propelled the urgent discovery of new antiplasmodial drugs, reviving the screening of secondary metabolites from traditional medicine. In plant metabolomics, NMR-based strategies are considered a golden method providing both a holistic view of the chemical profiles and a correlation between the metabolome and bioactivity, becoming a corner stone of drug development from natural products. OBJECTIVE: Create a multivariate model to identify antiplasmodial metabolites from 1H NMR data of two African medicinal plants, Keetia leucantha and K. venosa. METHODS: The extracts of twigs and leaves of Keetia species were measured by 1H NMR and the spectra were submitted to orthogonal partial least squares (OPLS) for antiplasmodial correlation. RESULTS: Unsupervised 1H NMR analysis showed that the effect of tissues was higher than species and that triterpenoids signals were more associated to Keetia twigs than leaves. OPLS-DA based on Keetia species correlated triterpene signals to K. leucantha, exhibiting a higher concentration of triterpenoids and phenylpropanoid-conjugated triterpenes than K. venosa. In vitro antiplasmodial correlation by OPLS, validated for all Keetia samples, revealed that phenylpropanoid-conjugated triterpenes were highly correlated to the bioactivity, while the acyclic squalene was found as the major metabolite in low bioactivity samples. CONCLUSION: NMR-based metabolomics combined with supervised multivariate data analysis is a powerful strategy for the identification of bioactive metabolites in plant extracts. Moreover, combination of statistical total correlation spectroscopy with 2D NMR allowed a detailed analysis of different triterpenes, overcoming the challenge posed by their structure similarity and coalescence in the aliphatic region.


Assuntos
Antimaláricos/farmacologia , Rubiaceae/metabolismo , Triterpenos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Análise Multivariada , Extratos Vegetais , Folhas de Planta/química , Triterpenos/análise
14.
Planta Med ; 85(11-12): 856-868, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31137048

RESUMO

Historically, latex-bearing plants have been regarded as important medicinal resources in many countries due to their characteristic latex ingredients. They have also often been endowed with a social or cultural significance in religious or cult rituals or for hunting. Initial chemical studies focused on the protein or peptide content but recently the interest extended to smaller molecules. Latex has been found to contain a broad range of specialized metabolites such as terpenoids, cardenolides, alkaloids, and phenolics, which are partly responsible for their antibacterial, antifungal, anthelmintic, cytotoxic, and insect-repellent activities. The diversity in biology and chemistry of latexes is supposedly associated to their ecological roles in interactions with exogenous factors. Latexes contain unique compounds that are different to those found in their bearing plants. Exploring the feasibility of plant latex as a new type of bioactive chemical resource, this review paper covers the chemical characterization of plant latexes, extending this to various other plant exudates. Also, the factors influencing this chemical differentiation and the production, transportation, and chemistry of the latex exudates are described, based on ecological and biochemical mechanisms. We also proposed a latex coagulation model involving 4 general conserved steps. Therefore, the inherent defensive origin of latexes is recognized as their most valuable character and encourages one to pay attention to these materials as alternative sources to discover metabolites with insecticidal or antimicrobial activity.


Assuntos
Látex/química , Extratos Vegetais/química , Ecologia , Látex/farmacologia , Extratos Vegetais/farmacologia , Plantas/metabolismo
15.
Planta Med ; 85(11-12): 917-924, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207650

RESUMO

Ideally, metabolomics should deal with all the metabolites that are found within cells and biological systems. The most common technologies for metabolomics include mass spectrometry, and in most cases, hyphenated to chromatographic separations (liquid chromatography- or gas chromatography-mass spectrometry) and nuclear magnetic resonance spectroscopy. However, limitations such as low sensitivity and highly congested spectra in nuclear magnetic resonance spectroscopy and relatively low signal reproducibility in mass spectrometry impede the progression of these techniques from being universal metabolomics tools. These disadvantages are more notorious in studies of certain plant secondary metabolites, such as saponins, which are difficult to analyse, but have a great biological importance in organisms. In this study, high-performance thin-layer chromatography was used as a supplementary tool for metabolomics. A method consisting of coupling 1H nuclear magnetic resonance spectroscopy and high-performance thin-layer chromatography was applied to distinguish between Ophiopogon japonicus roots that were collected from two growth locations and were of different ages. The results allowed the root samples from the two growth locations to be clearly distinguished. The difficulties encountered in the identification of the marker compounds by 1H nuclear magnetic resonance spectroscopy was overcome using high-performance thin-layer chromatography to separate and isolate the compounds. The saponins, ophiojaponin C or ophiopogonin D, were found to be marker metabolites in the root samples and proved to be greatly influenced by plant growth location, but barely by age variation. The procedure used in this study is fully described with the purpose of making a valuable contribution to the quality control of saponin-rich herbal drugs using high-performance thin-layer chromatography as a supplementary analytical tool for metabolomics research.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ophiopogon/metabolismo , Raízes de Plantas/metabolismo , Saponinas/metabolismo , Cromatografia em Camada Fina/métodos , Espectroscopia de Ressonância Magnética , Metabolômica , Ophiopogon/química , Raízes de Plantas/química , Saponinas/análise , Saponinas/química , Espirostanos/química
16.
Exp Appl Acarol ; 79(3-4): 279-298, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31768808

RESUMO

Under drought stress, Phytoseiulus persimilis females are able to lay drought-resistant eggs through an adaptive maternal effect. The mechanisms making these eggs drought resistant still remain to be investigated. For this purpose, we studied the physiological differences between drought-resistant and drought-sensitive eggs. We compared the volume and the surface-area-to-volume ratio (SA:V) of the eggs, their sex ratio, their chemical composition (by gas chromatography-mass spectrometry), their internal and external structure [by scanning electron microscope (SEM) and transmission electron microscope (TEM) images], and their developmental time. Our results show that drought-resistant and drought-sensitive eggs have a different chemical composition: drought-resistant eggs contain more compatible solutes (free amino acids and sugar alcohols) and saturated hydrocarbons than drought-sensitive eggs. This difference may contribute to reducing water loss in drought-resistant eggs. Moreover, drought-resistant eggs are on average 8.4% larger in volume, and have a 2.4% smaller SA:V than drought-sensitive eggs. This larger volume and smaller SA:V, probably the result of a higher water content, may make drought-resistant eggs less vulnerable to water loss. We did not find any difference in sex ratio, internal or external structure nor developmental time between drought-resistant and drought-sensitive eggs. These results mark the first step in the understanding of the strategies and the energetic costs involved in the production of drought-resistant eggs in P. persimilis females.


Assuntos
Secas , Ácaros , Óvulo/fisiologia , Animais , Feminino
17.
Angew Chem Int Ed Engl ; 58(9): 2809-2814, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30656821

RESUMO

The angucyclines form the largest family of polycyclic aromatic polyketides, and have been studied extensively. Herein, we report the discovery of lugdunomycin, an angucycline-derived polyketide, produced by Streptomyces species QL37. Lugdunomycin has unique structural characteristics, including a heptacyclic ring system, a spiroatom, two all-carbon stereocenters, and a benzaza-[4,3,3]propellane motif. Considering the structural novelty, we propose that lugdunomycin represents a novel subclass of aromatic polyketides. Metabolomics, combined with MS-based molecular networking analysis of Streptomyces sp. QL37, elucidated 24 other rearranged and non-rearranged angucyclines, 11 of which were previously undescribed. A biosynthetic route for the lugdunomycin and limamycins is also proposed. This work demonstrates that revisiting well-known compound families and their producer strains still is a promising approach for drug discovery.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Policetídeos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Metabolômica , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Policetídeos/química , Policetídeos/metabolismo , Streptomyces/química
18.
Metabolomics ; 14(10): 137, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830440

RESUMO

INTRODUCTION: The pharmacological activities of medicinal plants are reported to be due to a wide range of metabolites, therein, the concentrations of which are greatly affected by many genetic and/or environmental factors. In this context, a metabolomics approach has been applied to reveal these relationships. The investigation of such complex networks that involve the correlation between multiple biotic and abiotic factors and the metabolome, requires the input of information acquired by more than one analytical platform. Thus, development of new metabolomics techniques or hyphenations is continuously needed. OBJECTIVES: Feasibility of high performance thin-layer chromatography (HPTLC) were investigated as a supplementary tool for medicinal plants metabolomics supporting 1H nuclear magnetic resonance (1H NMR) spectroscopy. METHOD: The overall metabolic difference of plant material collected from two species (Rheum palmatum and Rheum tanguticum) in different geographical locations and altitudes were analyzed by 1H NMR- and HPTLC-based metabolic profiling. Both NMR and HPTLC data were submitted to multivariate data analysis including principal component analysis and orthogonal partial least square analysis. RESULTS: The NMR and HPTLC profiles showed that while chemical variations of rhubarb are in some degree affected by all the factors tested in this study, the most influential factor was altitude of growth. The metabolites responsible for altitude differentiation were chrysophanol, emodin and sennoside A, whereas aloe emodin, catechin, and rhein were the key species-specific markers. CONCLUSION: These results demonstrated the potential of HTPLC as a supporting tool for metabolomics due to its high profiling capacity of targeted metabolic groups and preparative capability.


Assuntos
Metabolômica , Raízes de Plantas/metabolismo , Rheum/metabolismo , Cromatografia em Camada Fina , Raízes de Plantas/química , Espectroscopia de Prótons por Ressonância Magnética , Rheum/química , Especificidade da Espécie
19.
Planta Med ; 84(12-13): 941-946, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797306

RESUMO

This paper describes the use of 1H NMR profiling and chemometrics in order to facilitate the selection of medicinal plants as potential sources of collagenase inhibitors. A total of 49 plants with reported ethnobotanical uses, such as the healing of wounds and burns, treatment of skin-related diseases, rheumatism, arthritis, and bone diseases, were initially chosen as potential candidates. The in vitro collagenase inhibitory activity of hydroalcoholic extracts of these plants was tested. Moreover, their phytochemical profiles were analyzed by 1H NMR and combined with the inhibitory activity data by an orthogonal partial least squares model. The results showed a correlation between the bioactivity and the concentration of phenolics, including flavonoids, phenylpropanoids, and tannins, in the extracts. Considering the eventual false-positive effect on the bioactivity given by tannins, a tannin removal procedure was performed on the most active extracts. After this procedure, Alchemilla vulgaris was the most persistently active, proving to owe its activity to compounds other than tannins. Thus, this plant was selected as the most promising and further investigated through bioassay-guided fractionation, which resulted in the isolation of a flavonoid, quercetin-3-O-ß-glucuronide, as confirmed by NMR and HRMS spectra. This compound showed not only a higher activity than other flavonoids with the same aglycone moiety, but was also higher than doxycycline (positive control), the only Federal Drug Administration-approved collagenase inhibitor. The approach employed in this study, namely the integration of metabolomics and bioactivity-guided fractionation, showed great potential as a tool for plant selection and identification of bioactive compounds in natural product research.


Assuntos
Alchemilla/química , Flavonoides/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metabolômica , Quercetina/análogos & derivados , Colagenases , Flavonoides/química , Flavonoides/isolamento & purificação , Espectroscopia de Ressonância Magnética , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Plantas Medicinais , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia
20.
Mar Drugs ; 16(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347785

RESUMO

Metabolomics has become an important tool in the search for bioactive compounds from natural sources, with the recent inclusion of marine organisms. Of the several steps performed in metabolomics studies, the extraction process is a crucial step-one which has been overlooked for a long time. In the presented study, a pressurized liquid extraction system was used to investigate the effect of extraction parameters such as pressure, temperature, number of cycles, and solvent polarity on the chemical diversity of the extract obtained from the marine sponge, Xestospongia. For this, a full factorial design (24) was performed using a chemical diversity index, which was found to be a suitable tool to determine the efficiency of the extraction process, as the response variable. This index was calculated using a logarithmic transformation of ¹H NMR signals. Three factors (number of cycles, temperature, and solvent polarity) and two interactions were found to affect the chemical diversity of the obtained extracts significantly. Two individual factors (temperature and solvent polarity) were selected for further study on their influence on sponge metabolites using orthogonal partial least square (OPLS) modeling. Based on the results, the groups of compounds that were most influenced by these parameters were determined, and it was concluded that ethanol as the extraction solvent together with low temperatures were the conditions that provided a higher chemical diversity in the extract.


Assuntos
Produtos Biológicos/isolamento & purificação , Extração Líquido-Líquido/métodos , Metabolômica/métodos , Poríferos/metabolismo , Animais , Produtos Biológicos/análise , Produtos Biológicos/metabolismo , Etanol/química , Espectroscopia de Prótons por Ressonância Magnética , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA