Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Histochem Cell Biol ; 159(2): 199-208, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129568

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.


Assuntos
Bombyx , Proteínas SNARE , Ratos , Coelhos , Animais , Proteínas SNARE/metabolismo , Bombyx/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Corpora Allata/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Encéfalo/metabolismo
2.
Biopharm Drug Dispos ; 44(6): 420-430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815926

RESUMO

CYP2C19 is a member of the human microsomal cytochrome P450 (CYP). Significant variation in CYP2C19 levels and activity can be attributed to polymorphisms in this gene. Wildtype CYP2C19 and 13 mutants (CYP2C19.1B, CYP2C19.5A, CYP2C19.5B, CYP2C19.6, CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.11, CYP2C19.13, CYP2C19.16, CYP2C19.19, CYP2C19.23, CYP2C19.30, and CYP2C19.33) were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Hydroxylase activity toward testosterone and progesterone was also examined. Ten CYP2C19 variants showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra. CYP2C19.11 and CYP2C19.23 showed higher testosterone 11α, 16α-/17- and progesterone 6ß-,21-,16α-/17α-hydroxylase activities than CYP2C19.1B. CYP2C19.6, CYP2C19.16, CYP2C19.19, and CYP2C19.30 showed lower activity than CYP2C19.1B. CYP2C19.9, CYP2C19.10. CYP2C19.13, and CYP2C19.33 showed different hydroxylation activities than CYP2C19.1B. These results indicated that CYP2C19 variants have very different substrate specificities for testosterone and progesterone.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Progesterona , Humanos , Progesterona/metabolismo , Testosterona/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidroxilação
3.
Histochem Cell Biol ; 151(2): 187-198, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30132061

RESUMO

Rab proteins are low-molecular weight (20-25 kDa) monomeric GTPases that are central to the control and regulation of vesicle trafficking. RabX6 is an insect-specific Rab protein that has no close homolog in vertebrates. However, little information about insect-specific Rab proteins is available. In this study, RabX6 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX6 were produced in rabbits and rats for western immunoblotting and immunohistochemistry. Western blotting of testis tissues revealed two bands, at positions corresponding to a molecular weight of approximately 26 kDa. RabX6-like immunohistochemical reactivity (RabX6-ir) was identified at the face of the testis, not in the spermatogonia, and was specifically detected at a pair of tritocerebral cells of the male brain. Furthermore, RNA interference of RabX6 was shown to decrease testicular growth. These findings suggest that RabX6 is involved in the regulation of testicular growth and male-specific neuropeptide secretion in the brain of B. mori.


Assuntos
Bombyx/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Bombyx/química , Masculino , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Proteínas rab de Ligação ao GTP/análise
4.
Microb Cell Fact ; 18(1): 194, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699086

RESUMO

BACKGROUND: 5'-Aminolevulinic acid (ALA) is widely used in the pharmaceutical industry, healthcare, and food production, and is a substrate for the biosynthesis of heme, which is required for respiration and photosynthesis. Enhancement of ALA biosynthesis has never been developed in Saccharomyces cerevisiae, which is a well-known model microorganism used for bioproduction of many value-added compounds. RESULTS: We demonstrated that metabolic engineering significantly improved ALA production in S. cerevisiae. First, we found that overexpression of HEM1, which encodes ALA synthetase, increased ALA production. Furthermore, addition of an optimal amount of glycine, a substrate for ALA biosynthesis, or levulinic acid, an inhibitor of ALA dehydrogenase, effectively increased ALA production. Next, we developed an assay for multiple metabolites including ALA and found that aconitase, encoded by ACO1 and ACO2, is the rate-limiting enzyme of ALA biosynthesis when sufficient glycine is supplied. Overexpression of ACO2 further enhanced ALA production in S. cerevisiae overexpressing HEM1. CONCLUSIONS: In this study, ALA production in S. cerevisiae was enhanced by metabolic engineering. This study also shows a strategy to identify the rate-limiting step of a target synthetic pathway by assay for multiple metabolites alongside the target product. This strategy can be applied to improve production of other valuable products in the well-studied and well-industrialized microorganism S. cerevisiae.


Assuntos
Ácidos Levulínicos/metabolismo , Engenharia Metabólica/métodos , Organismos Geneticamente Modificados/metabolismo , Saccharomyces cerevisiae , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Fermentação , Glicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Aminolevulínico
5.
Biopharm Drug Dispos ; 39(8): 371-377, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30098040

RESUMO

CYP2C9 is a human microsomal cytochrome P450c (CYP). Much variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and ten mutants were co-expressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward steroids were examined. CYP2C9.2, CYP2C9.3, CYP2C9.4, CYP2C9.16, CYP2C9.28, CYP2C9.48 and CYP2C9.52 had higher testosterone 6ß-hydroxylation than CYP2C9.1. CYP2C9.4 showed higher progesterone 6ß-hydroxylation activity than CYP2C9.1. CYP2C9.28 and CYP2C9.48 showed higher progesterone 11α-hydroxylation activity than CYP2C9.1. CYP2C9.48 showed higher progesterone 16α-hydroxylation activity than CYP2C9.1. CYP2C9.2, CYP2C9.3, CYP2C9.16 and CYP2C9.30 had higher estrone 16α-hydroxylation activity than CYP2C9.1. CYP2C9.3 had higher estrone 11α-hydroxylation activity than CYP2C9.1. CYP2C9.39 and CYP2C9.57 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.39 and CYP2C9.57 was not changed, but CYP2C9.2, CYP2C9.3, CYP2C9.4, CYP2C9.16, CYP2C9.28, CYP2C9.30, CYP2C9.48 and CYP2C9.52 showed different hydroxylation activities toward steroids compared with CYP2C9.1.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Esteroides/metabolismo , Citocromo P-450 CYP2C9/genética , Escherichia coli/genética , Hidroxilação , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/metabolismo , Esteroide Hidroxilases/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-28707374

RESUMO

Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.


Assuntos
Bombyx/metabolismo , Corpora Allata/metabolismo , Proteínas de Insetos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Gânglios dos Invertebrados/metabolismo , Hormônios de Inseto/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Interferência de RNA
7.
Biopharm Drug Dispos ; 38(8): 486-493, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758225

RESUMO

CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6ß-hydroxylation, progesterone 6ß-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids.


Assuntos
Cumarínicos/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Flavanonas/metabolismo , Esteroides/metabolismo , O-Dealquilase 7-Alcoxicumarina/metabolismo , Escherichia coli/genética , Humanos , Hidroxilação , Polimorfismo de Nucleotídeo Único
8.
Histochem Cell Biol ; 146(1): 59-69, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26976000

RESUMO

In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.


Assuntos
Bombyx/química , Encéfalo/imunologia , Corpora Allata/química , Corpora Allata/imunologia , Proteínas rab de Ligação ao GTP/análise , Animais , Anticorpos/imunologia , Bombyx/imunologia , Imuno-Histoquímica , Coelhos , Ratos , Proteínas rab de Ligação ao GTP/imunologia
9.
Biosci Biotechnol Biochem ; 80(5): 863-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872499

RESUMO

Rice straw is a promising resource for bioethanol production. Because the glucose content of pretreatment liquid hydrolysates is highly correlated with ethanol yield, the selection of appropriate rice cultivars is essential. The glucose content in liquid hydrolysates of pretreated rice straws of 208 diverse cultivars was evaluated in natural field in 2013 and 2014 using a novel high-throughput system. The glucose content of the rice straw samples varied across cultivars and was affected by environmental factors such as temperature and solar radiation. Several high-quality cultivars exhibiting high glucose content in both years were identified. The results of this study can aid in development of novel rice cultivars suitable as both feedstocks for bioethanol production and cooking.


Assuntos
Etanol/química , Glucose/química , Oryza/química , Caules de Planta/química , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Hidrólise , Oryza/metabolismo , Caules de Planta/metabolismo , Energia Solar , Ácidos Sulfúricos/química , Temperatura
10.
Biopharm Drug Dispos ; 36(8): 552-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26222491

RESUMO

CYP2A6 is a major hepatic member of the cytochrome P450 family in humans. Much variation in CYP2A6 levels and activity can be attributed to genetic polymorphisms of this gene. CYP2A6*25 comprises an amino acid substitution, F118L. To clarify the effect of the leucine substitution at position 118 in CYP2A6.25, this variant, wild type CYP2A6 and three additional variants consisting of artificial mutations at the substrate binding site (position 481) suggested by earlier reports using random mutagenesis studies [CYP2A6.1, CYP2A6.25, CYP2A6.1(F118A), CYP2A6.1(A481G) and CYP2A6.25(A481G)], were co-expressed with NADPH-cytochrome P450 reductase in E. coli. The hydroxylase activity of these variants toward 7-ethoxycoumarin, coumarin, flavone, α-naphthoflavone, flavanone and hydroxyflavanone were examined. All the mutants had lower activities for coumarin 7-hydroxylation than the wild type. All the mutants showed higher activities for flavone and α-naphthoflavone compared with CYP2A6.1. CYP2A6.1 had the highest flavanone 2'-hydroxylase activity, whereas CYP2A6.25 had the highest 6- and 4'-hydroxylase activities. CYP2A6.1(F118A), CYP2A6.1(A481G) and CYP2A6.25(A481G) had higher flavanone 3'-hydroxylase activities than CYP2A6.1 and CYP2A6.25. Furthermore, 4'-hydroxyflavanone was metabolized by CYP2A6.25. These results indicate that the CYP2A6.25 mutation confers new substrate specificity towards flavonoids.


Assuntos
Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Flavonoides/metabolismo , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Hidroxilação , Especificidade por Substrato , Transfecção
11.
Histochem Cell Biol ; 141(3): 311-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24190830

RESUMO

Rab guanosine triphosphatases in eukaryotic cells are key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab7 regulates traffic from early to late endosomes and from late endosomes to vacuoles/lysosomes. The Rab7-interacting lysosomal protein (RILP) was extracted from the silkworm, Bombyx mori (B. mori), and expressed in Escherichia coli (E. coli), followed by its purification. The glutathione sulfotransferase pull-down assay revealed that Rab7 of B. mori interacted with RILP of B. mori. We then produced antibodies against RILP of B. mori in rabbits for their use in Western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue for RILP revealed a single band, at approximately 50 kD. RILP-like immunohistochemical reactivity (RILP-ir) was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Furthermore, RILP-ir was colocalized with the eclosion hormone-ir and bombyxin-ir. However, RILP-ir was not colocalized with prothoracicotropic hormone-ir. These results were similar to those of Rab7 from our previous study. These findings suggest that RILP and Rab7 are involved in the neurosecretion in a restricted subtype of neurons in B. mori. Thus, our study is the first to report of a possible relationship between an insect Rab effector and neurosecretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Bombyx/embriologia , Proteínas/genética , Proteínas/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Bombyx/genética , Cérebro/metabolismo , Escherichia coli/genética , Feminino , Hormônios de Inseto , Larva , Masculino , Ovário/metabolismo , Testículo/metabolismo , Proteínas rab de Ligação ao GTP/biossíntese , proteínas de unión al GTP Rab7
12.
Histochem Cell Biol ; 139(2): 299-308, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22922733

RESUMO

Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.


Assuntos
Bombyx/metabolismo , Encéfalo/metabolismo , Hormônios de Inseto/biossíntese , Proteínas rab de Ligação ao GTP/biossíntese , Animais , Bombyx/enzimologia , Encéfalo/enzimologia , Imuno-Histoquímica , Hormônios de Inseto/análise , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/isolamento & purificação
13.
Biopharm Drug Dispos ; 34(2): 87-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23112005

RESUMO

CYP 2A6 is a human enzyme that metabolizes many xenobiotics including coumarin, indole, nicotine and carcinogenic nitrosamines. The gene for CYP2A6 is polymorphic. There are few data available to clarify the relationship between P450 genetic variants and the metabolism of materials in food. The CYP 2A6 wild-type protein and 13 mutants (CYP2A6.1, CYP2A6.2, CYP2A6.5, CYP2A6.6, CYP2A6.7, CYP2A6.8, CYP2A6.11, CYP2A6.15, CYP2A6.16, CYP2A6.17, CYP2A6.18, CYP2A6.21, CYP2A6.23 and CYP2A6.25) were co-expressed with NADPH-cytochrome P450 reductase in E. coli. The hydroxylase activities toward 7-ethoxycoumarin, coumarin, safrole, flavanone and hydroxyflavanone were examined. Ten types of CYP2A6 variants except for CYP2A6.2, CYP2A6.5 and CYP2A6.6 showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra and had 7-ethoxycoumarin O-deethylase activities. CYP2A6.15 and CYP2A6.18 showed higher activities for safrole 1'-hydroxylation than CYP2A6.1. CYP2A6.25 and CYP2A6.7 had lower safrole 1'-hydroxylase activities. CYP2A6.7 had lower flavanone 6- and 2'-hydroxylase activities, whereas CYP2A6.25 had higher 6-hydroxylase activity and lower 2'-hydroxylase activity. Hydroxyflavanone was metabolized by CYP2A6.25, but was not metabolized by wild-type CYP2A6.1. These results indicate that CYP2A6.25 possessed new substrate specificity toward flavonoids.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Cumarínicos/metabolismo , Flavanonas/metabolismo , Safrol/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2A6 , Escherichia coli/genética , Variação Genética , Humanos , Hidroxilação , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 285(39): 29797-807, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20639575

RESUMO

Cucumisin is a subtilisin-like serine protease (subtilase) that is found in the juice of melon fruits (Cucumis melo L.). It is synthesized as a preproprotein consisting of a signal peptide, NH(2)-terminal propeptide, and 67-kDa protease domain. We investigated the role of this propeptide (88 residues) in the cucumisin precursor. Complementary DNAs encoding the propeptides of cucumisin, two other plant subtilases (Arabidopsis ARA12 and rice RSP1), and bacterial subtilisin E were expressed in Escherichia coli independently of their mature enzymes. The cucumisin propeptide strongly inhibited cucumisin in a competitive manner with a K(i) value of 6.2 ± 0.55 nm. Interestingly, cucumisin was also strongly inhibited by ARA12 and RSP1 propeptides but not by the subtilisin E propeptide. In contrast, the propeptides of cucumisin, ARA12, and RSP1 did not inhibit subtilisin. Deletion analysis clearly showed that two hydrophobic regions, Asn(32)-Met(38) and Gly(97)-Leu(103), in the cucumisin propeptide were important for its inhibitory activity. Site-directed mutagenesis also confirmed the role of a Val(36)-centerd hydrophobic cluster within the Asn(32)-Met(38) region in cucumisin inhibition. Circular dichroism spectroscopy revealed that the cucumisin propeptide had a secondary structure without a cognate protease domain and that the thermal unfolding of the propeptide at 90 °C was only partial and reversible. A tripeptide, Ile(35)-Val(36)-Tyr(37), in the Asn(32)-Met(38) region was thought to contribute toward the formation of a proper secondary structure necessary for cucumisin inhibition. This is the first report on the function and structural information of the propeptide of a plant serine protease.


Assuntos
Cucurbitaceae/enzimologia , Precursores Enzimáticos/metabolismo , Dobramento de Proteína , Serina Endopeptidases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucurbitaceae/genética , Ativação Enzimática/fisiologia , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Mutagênese Sítio-Dirigida , Oryza/enzimologia , Oryza/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/metabolismo
15.
J Integr Plant Biol ; 53(12): 942-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22044778

RESUMO

In the tetrapyrrole biosynthetic pathway of higher plants, 5-aminolevulinic acid (ALA) is metabolized by ALA dehydratase (ALAD). Here, we isolated ALAD1 cDNA from common wheat (Triticum aestivum L.) and its diploid progenitors, and produced transgenic tobacco plants expressing the wheat ALAD1 gene. The ALAD1 genes were highly conserved among wheat relatives, and three homoeologous loci of wheat ALAD1 (TaALAD1) were equally transcribed in common wheat. A transient expression assay of a TaALAD1-GFP (green fluorescent protein) fusion protein suggested that TaALAD1 is localized in chloroplasts. Overexpression of TaALAD1 in transgenic tobacco resulted in a significant increase in ALAD activity in leaves. Moreover, the transgenic tobacco showed vigorous growth and increased survival rate on medium containing ALA at herbicidal concentrations. These results indicate that wheat ALAD1 has catalytic activity in metabolizing ALA in plastids, and that ectopic expression of TaALAD1 in transgenic plants increases their tolerance to ALA application at high concentrations.


Assuntos
Cloroplastos/enzimologia , DNA Complementar/genética , Proteínas de Plantas/genética , Sintase do Porfobilinogênio/genética , Homologia de Sequência do Ácido Nucleico , Triticum/enzimologia , Triticum/genética , Ácido Aminolevulínico/farmacologia , Sequência de Bases , China , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Clonagem Molecular , Meios de Cultura/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/enzimologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sintase do Porfobilinogênio/metabolismo , Transporte Proteico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
16.
Plants (Basel) ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922223

RESUMO

Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.

17.
Plants (Basel) ; 10(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205501

RESUMO

In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.

18.
Histochem Cell Biol ; 134(6): 615-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21069376

RESUMO

Small GTPases of the Rab family are key regulators of membrane trafficking. We produced antibodies against the Rab7 protein of Bombyx mori (BRab7) in rabbits, and against the Rab11 protein of B. mori (BRab11) in mice. The antibodies recognized BRab7 and BRab11 proteins, but did not recognize other Rab proteins. Immunoblotting of samples from brain tissue of B. mori revealed a single band for each antibody. Rab11 was expressed in most tissues, whereas Rab7 was expressed in the brain, ovary, and testis. Immunohistochemical reactivity of Rab7 and Rab11 in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Double-labeling experiments demonstrated that immunohistochemical reactivity of Rab7 co-localized with that of Rab11 and partially with that of Rab8. Immunohistochemical reactivity of Rab11 and Rab8 co-localized with that of PERIOD, one of the proteins associated with circadian rhythm. These findings suggest that Rab7, Rab8, and Rab11 are involved in protein transport in the neurons of the brain of B. mori and might play a role in the control of circadian rhythm.


Assuntos
Encéfalo/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Bombyx , Ritmo Circadiano/fisiologia , Imuno-Histoquímica , Camundongos , Proteínas Circadianas Period/metabolismo , Coelhos , Proteínas rab de Ligação ao GTP/imunologia , proteínas de unión al GTP Rab7
19.
Biol Lett ; 6(3): 379-81, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20071392

RESUMO

Rab GTPases are essential for vesicular transport, whereas adenosine triphosphate (ATP) is the most important and versatile of the activated carriers in the cell. But there are little reports to clarify the connection between ATP and Rab GTPases. A cDNA clone (Rab14) from Bombyx mori was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein bound to [(3)H]-GDP and [(35)S]-GTPgammaS. Binding of [(35)S]-GTPgammaS was inhibited by guanosine diphosphate (GDP), guanosine triphosphate (GTP) and ATP. Rab14 showed GTP- and ATP-hydrolysis activity. The Km value of Rab14 for ATP was lower than that for GTP. Human Rab14 also showed an ATPase activity. Furthermore, bound [(3)H]-GDP was exchanged efficiently with GTP and ATP. These results suggest that Rab14 is an ATPase as well as GTPase and gives Rab14 an exciting integrative function between cell metabolic status and membrane trafficking.


Assuntos
Adenosina Trifosfatases/fisiologia , Bombyx/enzimologia , Proteínas rab de Ligação ao GTP/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Ligação Competitiva , Bombyx/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Proteínas de Insetos/metabolismo , Proteínas de Insetos/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
20.
Arch Insect Biochem Physiol ; 70(2): 77-89, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18949803

RESUMO

The small GTPases known as Rab proteins are key regulators of membrane trafficking. We used RT-PCR to isolate cDNA clones of insect-specific Rab proteins (BRabN1 and BRabN2) showing low homology with known Rab proteins from other animals, from mRNA of Bombyx mori. These 2 Rabs were produced in Escherichia coli and purified. BRabN1 bound [(3)H]-GDP and [(35)S]-GTPgammaS with dissociation constants of 0.087 x 10(-6) M and 1.02 x 10(-6) M, respectively, whereas those of BRabN2 were 0.546 x 10(-6) M and 1.02 x 10(-6) M, respectively. Binding of [(35)S]-GTPgammaS to BRabN1 and N2 was inhibited by GDP and GTP. The GTP-hydrolysis activities of BRabN1 and N2 were 154 and 35.5 mmol/min/mole, respectively, and bound [(35)S]-GTPgammaS was exchanged efficiently with GTP. BRabN1 also showed ATPase activity and exchange of [(35)S]-GTPgammaS with ATP. Monoclonal antibodies against BRabN1 and N2 did not recognize any other Rab proteins, and Western blotting using the anti-BRabN1 antibody revealed a single band in the testis of B. mori. These results suggest that BRabN1 and N2 of B. mori bind GTP, convert from the GTP-bound state to the GDP-bound state by intrinsic GTP hydrolysis activity, and return to the GTP-bound state with the exchange, and that BRabN1 is specifically expressed in testis. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.


Assuntos
Bombyx/enzimologia , Proteínas de Insetos/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/isolamento & purificação , Bombyx/genética , DNA Complementar/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/metabolismo , Hidrólise , Immunoblotting , Proteínas de Insetos/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmídeos/química , Proteínas Recombinantes de Fusão/metabolismo , Radioisótopos de Enxofre , Proteínas rab de Ligação ao GTP/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA