Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microsc Microanal ; 26(3): 373-386, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32475372

RESUMO

Scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy (EDS), is a powerful tool used in many scientific fields. It can provide nanoscale images, allowing size and morphology measurements, as well as provide information on the spatial distribution of elements in a sample. This study compares the capabilities of a traditional EDS detector with a recently developed annular EDS detector when analyzing electron transparent and beam-sensitive NaCl particles on a TEM grid. The optimal settings for single particle analysis are identified in order to minimize beam damage and optimize sample throughput via the choice of acceleration voltage, EDS acquisition time, and quantification model. Here, a linear combination of two models is used to bridge results for particle sizes, which are neither bulk nor sufficiently thin to assume electron transparent. Additionally, we show that the increased count rate obtainable with the annular detector enables mapping as a viable analysis strategy compared with feature detection methods, which only scan segmented regions. Finally, we discuss advantages and disadvantages of the two analysis strategies.

2.
Part Fibre Toxicol ; 16(1): 23, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182125

RESUMO

BACKGROUND: Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS: Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 µg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS: Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Aeroportos , Dano ao DNA , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/farmacocinética , Animais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Pulmão/metabolismo , Pulmão/ultraestrutura , Camundongos Endogâmicos C57BL , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Material Particulado/análise , Material Particulado/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Proteína Amiloide A Sérica/análise , Fatores de Tempo , Distribuição Tecidual
3.
Appl Environ Microbiol ; 82(8): 2479-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921421

RESUMO

In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.


Assuntos
Aerossóis , Microbiologia do Ar , Exposição por Inalação , Micoses , Animais , Modelos Animais de Doenças , Camundongos
4.
Part Fibre Toxicol ; 13(1): 37, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357593

RESUMO

BACKGROUND: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of CNT or 54, 162 and 486 µg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. RESULTS: Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. CONCLUSIONS: Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.


Assuntos
Compostos de Epóxi/toxicidade , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Endotoxinas/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/patologia , Camundongos , Microscopia Eletrônica de Varredura
5.
Sci Rep ; 10(1): 9150, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499579

RESUMO

Particulate matter (PM) air pollution is a central concern for public health. Current legislation relies on a mass concentration basis, despite broad acceptance that mass alone is insufficient to capture the complexity and toxicity of airborne PM, calling for additional and more comprehensive measurement techniques. We study to what extent scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) can be applied for physicochemical characterization of complex aerosols, and investigate its potential for separating particle properties on a single particle basis, even for nanosized particles. SEM/EDS analysis is performed on impactor samples of laboratory generated aerosols, consisting of either NaCl, Halloysite fibers, soot-like Printex90 agglomerates, or their combination. The analysis is automated and performed as EDS maps, covering a statistically relevant number of particles, with analysis times of approximately one hour/sample. Derived size distributions are compared to scanning mobility particle sizer (SMPS) and electric low-pressure impactor (ELPI) results. A method is presented to estimate airborne number concentrations and size distributions directly from SEM results, within a factor 10 of SMPS and ELPI outcomes. A classification scheme is developed based on elemental composition, providing class-specific information with individual particle statistics on shape, size, and mixing state. This can identify primary particles for source apportionment and enables easy distinction between fibrous and dense particle classes, e.g. for targeted risk assessments. Overall, the SEM/EDS analysis provides a more detailed physicochemical characterization of PM than online measurements, e.g. SMPS and ELPI. The method has the potential to improve assessments of PM exposure and risk, and facilitates source identification, even without prior knowledge at sampling.

7.
J Phys Chem C Nanomater Interfaces ; 123(51): 30986-30995, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983933

RESUMO

Highly porous cellulose nanofiber (CNF) aerogels are promising, environmentally friendly, reusable, and low-cost materials for several advanced environmental, biomedical, and electronic applications. The aerogels have a complex and hierarchical 3D porous network structure with pore sizes ranging from nanometers to hundreds of micrometers. The morphology of the network has a critical role on the performance of aerogels, but it is difficult to characterize thoroughly with traditional techniques. Here, we introduce a combination of nuclear magnetic resonance (NMR) spectroscopy techniques for comprehensive characterization of pore sizes and connectivity in the CNF aerogels. Cyclohexane absorbed in the aerogels was used as a probe fluid. NMR cryoporometry enabled us to characterize the size distribution of nanometer scale pores in between the cellulose nanofibers in the solid matrix of the aerogels. Restricted diffusion of cyclohexane revealed the size distribution of the dominant micrometer scale pores as well as the tortuosity of the pore network. T 2 relaxation filtered microscopic magnetic resonance imaging (MRI) method allowed us to determine the size distribution of the largest, submillimeter scale pores. The NMR techniques are nondestructive, and they provide information about the whole sample volume (not only surfaces). Furthermore, they show how absorbed liquids experience the complex 3D pore structure. Thorough characterization of porous structures is important for understanding the properties of the aerogels and optimizing them for various applications. The introduced comprehensive NMR analysis set is widely usable for a broad range of different kinds of aerogels used in different applications, such as catalysis, batteries, supercapacitors, hydrogen storage, etc.

8.
J Colloid Interface Sci ; 553: 71-82, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31200231

RESUMO

Cellulose nanocrystals (CNCs) are promising bio-derived nanomaterials for the bottom-up fabrication of biomedical constructs. In this report, dicarboxylic acid-functionalized CNC (DCC) was functionalized with arginylglycylaspartic acid (RGD) tripeptide as a motif for improved cell adhesion and targeting. The product (DCC-RGD) self-assembled into a more elongated nanofibrillar structure through lateral and end-to-end association. When added into poly(ethylene imine) (PEI)/pDNA polyplex solution, nanocelluloses interacted electrostatically with positively charged polyplexes without affecting their integrity. The constructs were tested for their potentials as non-viral transfection reagents. Cell viability and transfection efficiency of fibroblast NIH3T3 cells were monitored as a function of CNC concentration where, in general, viability increased as the CNC concentration increased, and transfection efficiency could be optimized. Using wild-type MDCK and αV-knockout MDCK cells, the construct was able to provide targeted uptake of polyplexes. The findings have potential applications, for example, cell-selective in vitro or ex vivo transfection of autologous mesenchymal stem cells for cell therapy, or bottom-up design of future innovative biomaterials.


Assuntos
Celulose/química , DNA/química , Iminas/química , Nanofibras/química , Nanopartículas/química , Oligopeptídeos/química , Polietilenos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Cães , Relação Dose-Resposta a Droga , Células Madin Darby de Rim Canino , Camundongos , Estrutura Molecular , Células NIH 3T3 , Oligopeptídeos/farmacologia , Tamanho da Partícula , Plasmídeos , Propriedades de Superfície
9.
Sci Rep ; 9(1): 8093, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147577

RESUMO

Air pollution is one of the major contributors to the global burden of disease, with particulate matter (PM) as one of its central concerns. Thus, there is a great need for exposure and risk assessments associated with PM pollution. However, current standard measurement techniques bring no knowledge of particle composition or shape, which have been identified among the crucial parameters for toxicology of inhaled particles. We present a method for collecting aerosols via impaction directly onto Transmission Electron Microscopy (TEM) grids, and based on the measured impactor collection efficiency and observed impact patterns we establish a reproducible imaging routine for automated Scanning Electron Microscopy (SEM) analysis. The method is validated by comparison to scanning mobility particle sizer (SMPS) measurements, where a good agreement is found between the particle size distributions (PSD), ensuring a representative description of the sampled aerosol. We furthermore determine sampling conditions for achieving optimal particle coverage on the TEM grids, allowing for a statistical analysis. In summary, the presented method can provide not only a representative PSD, but also detailed statistics on individual particle geometries. If coupled with Energy-dispersive X-ray spectroscopy (EDS) analysis elemental compositions can be assessed as well. This makes it possible to categorize particles both according to size and shape e.g. round and fibres, or agglomerates, as well as classify them based on their elemental composition e.g. salt, soot, or metals. Combined this method brings crucial knowledge for improving the foundation for PM risk assessments on workplaces and in ambient conditions with complex aerosol pollution.

10.
Sci Total Environ ; 668: 13-24, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30851679

RESUMO

Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Aerossóis , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental , Humanos , Modelos Teóricos , Material Particulado , Medição de Risco
11.
J Hazard Mater ; 341: 218-227, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28780436

RESUMO

Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm to 31µm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×1010s-1 and the mean mass emission rate was 381µgs-1. The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h-1 for <1µm-size and the deposited particles consisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5µm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization.

12.
J Nanopart Res ; 20(2): 48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497347

RESUMO

Fume hoods are one of the most common types of equipment applied to reduce the potential of particle exposure in laboratory environments. A number of previous studies have shown particle release during work with nanomaterials under fume hoods. Here, we assessed laboratory workers' inhalation exposure during synthesis and handling of CuO, TiO2 and ZnO in a fume hood. In addition, we tested the capacity of a fume hood to prevent particle release to laboratory air during simulated spillage of different powders (silica fume, zirconia TZ-3Y and TiO2). Airborne particle concentrations were measured in near field, far field, and in the breathing zone of the worker. Handling CuO nanoparticles increased the concentration of small particles (< 58 nm) inside the fume hood (up to 1 × 105 cm-3). Synthesis, handling and packaging of ZnO and TiO2 nanoparticles did not result in detectable particle release to the laboratory air. Simulated powder spills showed a systematic increase in the particle concentrations inside the fume hood with increasing amount of material and drop height. Despite powder spills were sometimes observed to eject into the laboratory room, the spill events were rarely associated with notable release of particles from the fume hood. Overall, this study shows that a fume hood generally offers sufficient exposure control during synthesis and handling of nanomaterials. An appropriate fume hood with adequate sash height and face velocity prevents 98.3% of particles release into the surrounding environment. Care should still be made to consider spills and high cleanliness to prevent exposure via resuspension and inadvertent exposure by secondary routes.

13.
PLoS One ; 13(8): e0202477, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30125308

RESUMO

Recent findings show that cerium oxide (CeO2) nanoparticles may undergo in vivo-induced size transformation with the formation of smaller particles that could result in a higher translocation following pulmonary exposure compared to virtually insoluble particles, like titanium dioxide (TiO2). Therefore, we compared liver deposition of CeO2 and TiO2 nanoparticles of similar primary sizes 1, 28 or 180 days after intratracheal instillation of 162 µg of NPs in female C57BL/6 mice. Mice exposed to 162 µg CeO2 or TiO2 nanoparticles by intravenous injection or oral gavage were included as reference groups to assess the amount of NPs that reach the liver bypassing the lungs and the translocation of NPs from the gastrointestinal tract to the liver, respectively. Pulmonary deposited CeO2 nanoparticles were detected in the liver 28 and 180 days post-exposure and TiO2 nanoparticles 180 days post-exposure as determined by darkfield imaging and by the quantification of Ce and Ti mass concentration by inductively coupled plasma-mass spectrometry (ICP-MS). Ce and Ti concentrations increased over time and 180 days post-exposure the translocation to the liver was 2.87 ± 3.37% and 1.24 ± 1.98% of the initial pulmonary dose, respectively. Single particle ICP-MS showed that the size of CeO2 nanoparticles in both lung and liver tissue decreased over time. No nanoparticles were detected in the liver following oral gavage. Our results suggest that pulmonary deposited CeO2 and TiO2 nanoparticles translocate to the liver with similar calculated translocation rates despite their different chemical composition and shape. The observed particle size distributions of CeO2 nanoparticles indicate in vivo processing over time both in lung and liver. The fact that no particles were detected in the liver following oral exposure showed that direct translocation of nanoparticles from lung to the systemic circulation was the most important route of translocation for pulmonary deposited particles.


Assuntos
Cério , Fígado/metabolismo , Pulmão/metabolismo , Nanopartículas/efeitos adversos , Animais , Cério/efeitos adversos , Cério/farmacocinética , Cério/farmacologia , Feminino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Titânio/efeitos adversos , Titânio/farmacocinética , Titânio/farmacologia
14.
Sci Total Environ ; 630: 1283-1291, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554749

RESUMO

Nanoscale TiO2 (nTiO2) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO2 concentration levels were used to assess process specific emission rates using a convolution theorem and to calculate inhalation dose rates of deposited nTiO2 particles. Dip coating did not result in detectable release of particles but air blade drying released fine-sized TiO2 and nTiO2 particles. nTiO2 was found in pure nTiO2 agglomerates and as individual particles deposited onto background particles. Total particle emission rates were 420×109min-1, 1.33×109µm2min-1, and 3.5mgmin-1 respirable mass. During a continued repeated process, the average exposure level was 2.5×104cm-3, 30.3µm2cm-3, <116µgm-3 for particulate matter. The TiO2 average exposure level was 4.2µgm-3, which is well below the maximum recommended exposure limit of 300µgm-3 for nTiO2 proposed by the US National Institute for Occupational Safety and Health. During an 8-hour exposure, the observed concentrations would result in a lung deposited surface area of 4.3×10-3cm2g-1 of lung tissue and 13µg of TiO2 to the trachea-bronchi, and alveolar regions. The dose levels were well below the one hundredth of the no observed effect level (NOEL1/100) of 0.11cm2g-1 for granular biodurable particles and a daily no significant risk dose level of 44µgday-1. These emission rates can be used in a mass flow model to predict the impact of process emissions on personal and environmental exposure levels.


Assuntos
Filtros de Ar , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Cerâmica , Monitoramento Ambiental , Humanos , Nanopartículas , Tamanho da Partícula , Material Particulado , Titânio
15.
Nanotoxicology ; 10(9): 1263-75, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27323647

RESUMO

Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 µg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects.


Assuntos
Quebras de DNA , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Ensaio Cometa , Relação Dose-Resposta a Droga , Feminino , Exposição por Inalação/análise , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/química , Infiltração de Neutrófilos/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Tamanho da Partícula , Pneumonia/imunologia , Análise de Regressão , Propriedades de Superfície
16.
Environ Mol Mutagen ; 57(6): 469-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189646

RESUMO

Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2-3 graphene layers with lateral sizes of 1-2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5-200 µg/ml). Environ. Mol. Mutagen. 57:469-482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Grafite/toxicidade , Nanopartículas/toxicidade , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Grafite/química , Camundongos , Microscopia Eletrônica de Transmissão e Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Óxidos/química , Óxidos/toxicidade , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
17.
Nanotoxicology ; 10(6): 794-806, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26674712

RESUMO

Some multi-walled carbon nanotubes (MWCNTs) induce mesothelioma in rodents, straight MWCNTs showing a more pronounced effect than tangled MWCNTs. As primary and secondary genotoxicity may play a role in MWCNT carcinogenesis, we used a battery of assays for DNA damage and micronuclei to compare the genotoxicity of straight (MWCNT-S) and tangled MWCNTs (MWCNT-T) in vitro (primary genotoxicity) and in vivo (primary or secondary genotoxicity). C57Bl/6 mice showed a dose-dependent increase in DNA strand breaks, as measured by the comet assay, in lung cells 24 h after a single pharyngeal aspiration of MWCNT-S (1-200 µg/mouse). An increase was also observed for DNA strand breaks in lung and bronchoalveolar lavage (BAL) cells and for micronucleated alveolar type II cells in mice exposed to aerosolized MWCNT-S (8.2-10.8 mg/m(3)) for 4 d, 4 h/d. No systemic genotoxic effects, assessed by the γ-H2AX assay in blood mononuclear leukocytes or by micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow or blood, were observed for MWCNT-S by either exposure technique. MWCNT-T showed a dose-related decrease in DNA damage in BAL and lung cells of mice after a single pharyngeal aspiration (1-200 µg/mouse) and in MNPCEs after inhalation exposure (17.5 mg/m(3)). In vitro in human bronchial epithelial BEAS-2B cells, MWCNT-S induced DNA strand breaks at low doses (5 and 10 µg/cm(2)), while MWCNT-T increased strand breakage only at 200 µg/cm(2). Neither of the MWCNTs was able to induce micronuclei in vitro. Our findings suggest that both primary and secondary mechanisms may be involved in the genotoxicity of straight MWCNTs.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nanotubos de Carbono/toxicidade , Animais , Linhagem Celular , Ensaio Cometa , Células Epiteliais/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes para Micronúcleos
18.
Environ Mol Mutagen ; 56(2): 183-203, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25393212

RESUMO

Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured Nanomaterials (WPMN) (NM-401, NM-402, and NM-403), materials (NRCWE-026 and MWCNT-XNRI-7), and three sets of surface-modified MWCNT grouped by physical characteristics (thin, thick, and short I-III, respectively). Each Groups I-III included pristine, hydroxylated and carboxylated MWCNT. Group III also included an amino-functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by <2% of the weight, with exceptions. Based on dynamic light scattering data, the MWCNT were well-dispersed in stock dispersion of nanopure water with 2% serum, but agglomerated and sedimented during exposure. FE1-Muta(TM) Mouse lung epithelial cells were exposed for 24 hr. The levels of DNA strand breaks (SB) were evaluated using the comet assay, a screening assay suitable for genotoxicity testing of nanomaterials. Exposure to MWCNT (12.5-200 µg/ml) did not induce significant cytotoxicity (viability above 92%). Cell proliferation was reduced in highest doses of some MWCNT after 24 hr, and was associated with generation of reactive oxygen species and high surface area. Increased levels of DNA SB were only observed for Group II consisting of MWCNT with large diameters and high Fe2 O3 and Ni content. Significantly, increased levels of SB were only observed at 200 µg/ml of MWCNT-042. Overall, the MWCNT were not cytotoxic and weakly genotoxic after 24 hr exposure to doses up to 200 µg/ml.


Assuntos
Dano ao DNA/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mutagênicos/efeitos adversos , Nanotubos de Carbono/efeitos adversos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Camundongos , Testes de Mutagenicidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA