Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecotoxicol Environ Saf ; 251: 114526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634477

RESUMO

The extensive use of plastic products and rapid industrialization have created a universal concern about microplastics (MPs). MPs can pose serious environmental risks when combined with heavy metals. However, current research on the combined effects of MPs and hexavalent chromium [Cr(VI)] on plants is insufficient. Herein, a 14-day hydroponic experiment was conducted to investigate the impact of PVC MPs (100 and 200 mg/L) and Cr(VI) (5, 10, and 20 µM) alone and in combination on sweet potato. Results showed that combined Cr(VI) and PVC MPs affected plant growth parameters significantly, but PVC MPs alone did not. The combined application of PVC MPs and Cr(VI) resulted in a decrease in plant height (24-65%), fresh biomass per plant (36-71%), and chlorophyll content (16-34%). Cr(VI) bioaccumulation increased with the increase in its doses, with the highest concentration of Cr(VI) in the leaves (16.45 mg/kg), stems (13.81 mg/kg), and roots (236.65 mg/kg). Cr(VI) and PVC MPs-induced inhibition varied with Cr(VI) and PVC MPs doses. Osmolytes and antioxidants, lipid peroxidation, and H2O2 contents were significantly increased, while antioxidant enzymes except CAT were decreased with increasing Cr(VI) concentration alone and mixed treatments. The presence of PVC MPs promoted Cr(VI) accumulation in sweet potato plants, which clearly showed severe toxic effects on their physio-biochemical characteristics, as indicated by a negative correlation between Cr(VI) concentration and these parameters. PVC MPs alone did not significantly inhibit these parameters. The findings of this study provide valuable implications for the proper management of PVC MPs and Cr(VI) in sweet potato plants.


Assuntos
Ipomoea batatas , Microplásticos , Plásticos , Cloreto de Polivinila/toxicidade , Peróxido de Hidrogênio , Cromo/toxicidade , Antioxidantes
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362283

RESUMO

Crop productivity is enormously exposed to different environmental stresses, among which chromium (Cr) stress raises considerable concerns and causes a serious threat to plant growth. This study explored the toxic effect of Cr on sweet potato plants. Plants were hydroponically grown, and treatments of 0, 25, 50, 100, and 200 µM Cr were applied for seven days. This study exhibited that a low level of Cr treatment (25 µM) enhanced the growth, biomass, photosynthesis, osmolytes, antioxidants, and enzyme activities. However, significant deleterious effects in growth, biomass, photosynthetic attributes, antioxidants, and enzymes were observed at higher levels of Cr treatment. The remarkable reduction in plant growth traits was associated with the over-accumulation of H2O2 and MDA contents (410% and 577%, respectively) under the highest rate of Cr (200 µM). Under 200 µM Cr, the uptake in the roots were 27.4 mg kg-1 DW, while in shoots were 11 mg kg-1 DW with the highest translocation rate from root to shoot was 0.40. The results showed that the higher accumulation of Cr negatively correlated with the phenotypic and physiological parameters. It may be proposed that Cr toxicity causes oxidative damage as sustained by augmented lipid peroxidation, reactive oxygen species, and reduced photosynthetic rate, chlorophyll, and stomatal traits. The chloroplastic ultrastructure was damaged, and more apparent damage and size reduction were observed at higher Cr levels. Furthermore, aggregated Cr concentration positively correlates with the increase of osmolytes and superoxide dismutase (SOD) activity in the leaves of sweet potato. Moreover, improved osmolytes and SOD do not help protect sweet potato against high Cr stress. Overall, these findings will improve the understanding of the defense mechanisms of sweet potato to Cr stress.


Assuntos
Ipomoea batatas , Poluentes do Solo , Cromo/toxicidade , Peróxido de Hidrogênio/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/farmacologia , Folhas de Planta , Superóxido Dismutase/farmacologia
3.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335292

RESUMO

The genus Bidens a member of family Compositae, is widely documented as an ethno-medicinally important genus of plants. In the present study, anticancer potential of three ethno-medicinally important species i.e., B. bipinnata, B. biternata and B. pilosa were tested. For in-vitro evaluation, an MTT (Thiazolyl blue tetrazolium bromide) assay was performed against cervical cancer cells (HeLa), hepatocellular carcinoma (HepG), and adenocarcinoma human alveolar basal epithelial cells (A549). For in vivo evaluation, Artemia salina, Danio rerio, and Caenorhabditis elegans were used. Among all the tested extracts, the ethanol extract of B. biternata appeared to have highest anticancer activity, and the compounds responsible for this activity were identified to be Tris (2,4-di-tert-butylphenyl), 4-hydroxy-2,4'-dimethoxychalcone, and 2,4-di-tert-butylphenol. This is the first report of the isolation of Tris (2,4-di-tert-butylphenyl) phosphate from the genus Bidens and the first report of 4-hydroxy-2,4'-dimethoxychalcone and 2,4-di-tert-butylphenol from B. biternata. Among the isolated compounds, 4-hydroxy-2,4'-dimethoxychalcone showed the highest anticancer activity with an LD50 value of 236.7 µg/mL. Therefore, this compound carries promising potential for being established as a pharmaceutical for chemoprevention and chemotherapy.


Assuntos
Extratos Vegetais , Plantas , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa , Humanos
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466729

RESUMO

Plants adapt to environmental changes by regulating their development and growth. As an important interface between plants and their environment, leaf morphogenesis varies between species, populations, or even shows plasticity within individuals. Leaf growth is dependent on many environmental factors, such as light, temperature, and submergence. Phytohormones play key functions in leaf development and can act as molecular regulatory elements in response to environmental signals. In this review, we discuss the current knowledge on the effects of different environmental factors and phytohormone pathways on morphological plasticity and intend to summarize the advances in leaf development. In addition, we detail the molecular mechanisms of heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and the environmental adaptation in plants.


Assuntos
Aclimatação , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas/anatomia & histologia , Plantas/genética
5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203933

RESUMO

Natural resistance-associated macrophage proteins (Nramps) are specific metal transporters in plants with different functions among various species. The evolutionary and functional information of the Nramp gene family in Spirodela polyrhiza has not been previously reported in detail. To identify the Nramp genes in S. polyrhiza, we performed genome-wide identification, characterization, classification, and cis-elements analysis among 22 species with 138 amino acid sequences. We also conducted chromosomal localization and analyzed the synteny relationship, promoter, subcellular localization, and expression patterns in S. polyrhiza. ß-Glucuronidase staining indicated that SpNramp1 and SpNramp3 mainly accumulated in the root and joint between mother and daughter frond. Moreover, SpNramp1 was also widely displayed in the frond. SpNramp2 was intensively distributed in the root and frond. Quantitative real-time PCR results proved that the SpNramp gene expression level was influenced by Cd stress, especially in response to Fe or Mn deficiency. The study provides detailed information on the SpNramp gene family and their distribution and expression, laying a beneficial foundation for functional research.


Assuntos
Araceae/genética , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Araceae/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
6.
Chemosphere ; 350: 141120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199502

RESUMO

Salt stress profoundly impacts sweetpotato production. Exogenous glutathione (GSH) and melatonin (MT) promoted plant growth under stress, but their specific roles and mechanisms in sweetpotato salt tolerance need exploration. This study investigated GSH and MT's regulatory mechanisms in sweetpotato under salt stress. Salt stress significantly reduces both growth and biomass by hindering photosynthesis, root traits, K+ content, and K+/Na+ balance, leading to oxidative stress and excessive hydrogen peroxide (H2O2), superoxide ion (O2•-), and malondialdehyde (MDA) production and Na+ accumulation. Nevertheless, GSH (2 mM) and MT (25 µM) pre-treatments effectively mitigated salt-induced oxidative damage and protected the plasma membrane. They reduced osmotic pressure by enhancing K+ uptake, K+/Na+ regulation, osmolyte accumulation, and reducing Na+ accumulation. Improved stomatal traits, chloroplast and grana lamella preservation, and maintenance of mesophyll cells, cell wall, and mitochondrial structure were observed with GSH and MT pre-treatments under salt stress, therefore boosting the photosynthetic system and enhancing plant growth and biomass. Moreover, the findings also indicate that the positive outcomes of GSH and MT pre-treatments result from elevated antioxidant levels, enhanced enzymatic activity, and upregulated expression of sodium hydrogen exchanger 2 (NHX2), K+transporter 1 (AKT1), and cation/H+exchanger (CHX), CBL-interacting protein kinase 1 (CIPK1), and antioxidant enzyme genes. These mechanisms enhance structural stability in photosynthesis and reduce salt stress. Evidently, MT pre-treatment exhibited superior effects compared to GSH. These findings provide a firm theoretical basis for employing GSH and MT to enhance salt tolerance in sweetpotato cultivation.


Assuntos
Melatonina , Melatonina/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Tolerância ao Sal , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , Fotossíntese
7.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
8.
Foods ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540823

RESUMO

Purple sweetpotato anthocyanins (PSPA) exhibit significant potential as food colorants with associated health benefits. However, challenges related to browning and instability have hindered the application of PSPA. In this study, various pre-treatments and solvents for PSPA extraction were evaluated based on color, anthocyanin yields, antioxidant capabilities, and brown index. Browning markedly influenced the color and reduced the antioxidant capacity. Optimal results were obtained with the pre-treatment of "steaming of unpeeled whole sweetpotato" and the solvent "1% citric acid-ddH2O". Furthermore, the color stability of purified PSPA solutions was evaluated under pH levels from 1 to 13 at 25 °C and 65 °C. The PSPA solutions showed a color spectrum from magenta, blue/green, and then to yellow across the pH range. The blue/green hues at pH 10-12 rapidly degraded, while the magenta hue at lower pH showed higher color stability. Elevated temperatures significantly accelerated the PSPA degradation. However, PSPA solutions at pH 1-2 exhibited remarkable color stability, with no spectral decay at either 65 °C for 12 h or 25 °C for 32 days. These results provide valid guidance for the extraction, preservation, and application of PSPA in the food industry.

9.
Plants (Basel) ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37653956

RESUMO

An appropriate planting density could realize the maximum yield potential of crops, but the mechanism of sweet potato storage root formation in response to planting density is still rarely investigated. Four planting densities, namely D15, D20, D25, and D30, were set for 2-year and two-site field experiments to investigate the carbohydrate and lignin metabolism in potential storage roots and its relationship with the storage root number, yield, and commercial characteristics at the harvest period. The results showed that an appropriate planting density (D20 treatment) stimulated cambium cell differentiation, which increased carbohydrate accumulation and inhibited lignin biosynthesis in potential storage roots. At canopy closure, the D20 treatment produced more storage roots, particularly developing ones. It increased the yield by 10.18-19.73% compared with the control D25 treatment and improved the commercial features by decreasing the storage root length/diameter ratio and increasing the storage root weight uniformity. This study provides a theoretical basis for the high-value production of sweet potato.

10.
Front Plant Sci ; 13: 820644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251089

RESUMO

Aroma is one of the key food characteristics determining consumers' perception and acceptability of products. Coriandrum sativum L. is an aromatic herb commonly used as a food additive and taste enhancer. Besides the culinary applications, coriander is also used in traditional medicine, cosmetics, and the food industry. In this study, we aimed to determine aroma composition of fresh chopped leaves and essential oils extracted from the leaves of four coriander cultivars. The essential oils were extracted from the fresh leaves using steam distillation and volatile aroma components were collected from the headspace by solid phase micro extraction technique. Analyses were carried out by gas chromatography-mass spectrometry. Free radical scavenging activity of essential oils was determined by using 2,2-diphenyl-1-picrylhydrazyl assay. The essential oils were also investigated for their anti-microbial potential. The aroma of freshly chopped coriander leaves was characterized by thirteen compounds, including six aldehydes, four alcohols, one ester and one hydrocarbon. The essential oils were comprised of twenty-seven compounds, where (E)-2-decenal, decanal, (E)-2-dodecenal and (E)-2-tetradecenal were the main components in all cultivars. Free radical scavenging activity of the essential oil samples was in the range of 6-15%. The essential oils of Desi and Hybrid cultivars exhibited least minimum inhibitory concentration (MIC) against all tested bacterial strains. Fresh green leaves of the Desi and Peshawari cultivars were found to be the richest in six carbon chain length alcohols and acetates, which are important constituents of the aroma giving a characteristic odor referred to as the "green note." The Hybrid cultivar showed the highest free radical scavenging activity, bearing the highest amount of antioxidants. The study revealed that the fresh leaves HS aroma of Desi and Hybrid cultivars were different, however, their essential oils possessed almost similar chemistry and anti-bacterial activity.

11.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35326120

RESUMO

Field blanching is a process used in agriculture to obtain sweet, delicious, and tender stems of water dropwort by obstructing sunlight. The nutritional and transcriptomic profiling of blanched water dropwort has been investigated in our previous studies. However, the effect of blanching on the production of secondary metabolites and different vitamins in water dropwort has not been investigated at the transcriptomic level. This study explored the transcriptomic variations in the phenylpropanoid biosynthesis, flavonoid biosynthesis, and different vitamin biosynthesis pathways under different blanching periods in the water dropwort stems (pre-blanching, mid-blanching, post-blanching, and control). The results show that polyphenol and flavonoid contents decreased; however, the contents of vitamins (A, B1, B2, and C) and antioxidant activity increased significantly after blanching. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of blanched water dropwort showed the downregulation of many important genes involved in phenylpropanoid and flavonoid biosynthesis pathways, and the downregulation of these genes might be the reason for the reduction in polyphenol and flavonoid contents. We also examined and highlighted the genes involved in the higher vitamin content, antioxidant activity, pale color, tenderness, and sweetness of the blanched stem of water dropwort. In conclusion, the present study explored the role of phenylpropanoid and vitamin biosynthesis, and it will provide a basis for future investigation and application in the blanch cultivation of water dropwort.

12.
Antioxidants (Basel) ; 11(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36552615

RESUMO

Vanadium (V) is a heavy metal found in trace amounts in many plants and widely distributed in the soil. This study investigated the effects of vanadium concentrations on sweet potato growth, biomass, root morphology, photosynthesis, photosynthetic assimilation, antioxidant defense system, stomatal traits, and V accumulation. Sweet potato plants were grown hydroponically and treated with five levels of V (0, 10, 25, 50, and 75 mg L-1). After 7 days of treatment, V content at low concentration (10 mg L-1) enhanced the plant growth and biomass; in contrast, drastic effects were observed at 25, 50, and 75 mg L-1. Higher V concentrations negatively affect the relative water content, photosynthetic assimilation, photosynthesis, and root growth and reduce tolerance indices. The stomatal traits of sweet potato, such as stomatal length, width, pore length, and pore width, were also decreased under higher V application. Furthermore, V concentration and uptake in the roots were higher than in the shoots. In the same way, reactive oxygen species (ROS) production (hydrogen peroxide), lipid peroxidation (malondialdehyde), osmolytes, glutathione, and enzymes (catalase and superoxide dismutase) activities were increased significantly under V stress. In conclusion, V at a low level (10 mg L-1) enhanced sweet potato growth, and a higher level of V treatment (25, 50, and 75 mg L-1) had a deleterious impact on the growth, physiology, and biochemical mechanisms, as well as stomatal traits of sweet potato.

13.
Front Plant Sci ; 13: 872422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677246

RESUMO

Field and pot experiments were conducted to explore the response mechanism of endogenous hormones of potential storage root to phosphorus and its relationship with yield and appearance quality of sweetpotato using five different rates of phosphorus addition. Application of adequate amounts of phosphorus (P2 treatment, 112 kg of P2O5 ha-1 in field experiment or 0.04 g of P2O5 kg-1 in pot experiment) improved the yield and the appearance quality of sweetpotato when compared to the control treatment. This observation can be attributed to the fact that P2 treatment significantly increased the expression of Ibkn1 and APRT genes and the concentration of ZR from 20 to 40 days after planting, but the results were the opposite at 10 days after planting. In addition, an increase in the expression of SRD1, NIT4, IbMADS1, and OPR3 and the concentrations of IAA and JA from day 10 to day 40 after planting were observed. Furthermore, the expression of GA3oX4 and the concentration of GA3 decreased significantly from 20 to 30 days of planting and significantly increased after 40 days of planting. Moreover, a significant decrease in the expression of AAO and concentration of ABA was observed from 10 to 30 days after planting, and a significant increase was observed after 40 days of planting. The results show that P2 treatment promoted root development, particularly significantly increased the number of roots and potential storage roots. P2 treatment significantly increased the diameter, weight, and number of storage roots at 40 days after planting. Finally, proper phosphorus application (112 kg of P2O5 ha-1) increased the yield (enhanced from 18.99 to 25.93%) by increasing the number of storage roots per plant and improving the appearance quality by increasing the length/diameter ratio and uniformity of storage root weight.

14.
J Hazard Mater ; 432: 128646, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325863

RESUMO

Global anthropogenic changes are altering the temperature and nutrients of the ecosystem, which might also affect the extent of cadmium (Cd) toxicity in organisms. This study aimed to investigate the combined effects of temperature and nutrient availability (here, nitrogen [N] and phosphorus [P]) on Cd toxicity in duckweed (Lemna aequinoctialis). The growth parameters, nutrient uptake, and Cd tolerance of plantlets reached their highest values for duckweed grown in medium with 28 mg/L N and 2.4 mg/L P (N:P = 11.67) at 25 °C under 1 mg/L CdCl2 exposure. Raising the temperature (from 18 °C to 25 °C) and levels of N and P (from 0.01 N/P to 2 N/P) enhanced photosynthetic capacity and nutrient uptake, thus promoting plant growth and diluting the toxic effects of Cd. Although Cd uptake increased with increasing temperature, duckweed with relatively high biomass exhibited a lower accumulation of the toxic metal because their growth rate exceeded Cd uptake rate. Increasing N and P supply also enhanced the tolerance of duckweed to Cd by limiting Cd bioavailability. Our study therefore suggests the importance of combined effects from temperature and nutrients for Cd toxicity and provides novel insights for a comprehensive analysis of Cd toxicity associated with the environmental factors of a particular ecosystem.


Assuntos
Araceae , Cádmio , Cádmio/toxicidade , Ecossistema , Nutrientes , Temperatura
15.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432744

RESUMO

Leaves of sweetpotato (Ipomoea batatas L.) are promising healthy leafy vegetable. Juvenile red fading (JRF) leaves of sweetpotato, with anthocyanins in young leaves, are good candidates for developing functional vegetables. Here, metabolic profiling and possible antioxidants were analyzed for five leaf stages of the sweetpotato cultivar "Chuanshan Zi". The contents of anthocyanins, total phenolics, and flavonoids all declined during leaf maturation, corresponding to declining antioxidant activities. By widely targeted metabolomics, we characterized 449 metabolites belonging to 23 classes. A total of 193 secondary metabolites were identified, including 82 simple phenols, 85 flavonoids, 18 alkaloids, and eight terpenes. Analysis of the metabolic data indicates that the antioxidant capacity of sweetpotato leaves is the combined result of anthocyanins and many other colorless compounds. Increased levels of "chlorogenic acid methyl ester", a compromised form of chlorogenic acid, significantly correlated with the declined antioxidant abilities. Besides anthocyanins, some significant metabolites contributing to the high antioxidant property of the sweetpotato leaves were highlighted, including chlorogenic acids, isorhamnetin glycosides, trans-4-hydroxycinnamic acid methyl ester, 4-methoxycinnamic acid, esculetin, caffeate, and trigonelline. This study provides metabolic data for the utilization of sweetpotato leaves as food sources, and sheds light on the metabolomic change for JRF leaves of other plants.

16.
Front Plant Sci ; 13: 1054924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438136

RESUMO

Nickel (Ni) contaminated soil is a persistent risk to plant growth and production worldwide. Therefore, to explore the Ni toxicity levels in sweetpotato production areas, we investigated the influence of different Ni treatments (0, 7.5, 15, 30, and 60 mg L-1) for 15 days on phenotype, Ni uptake, relative water content, gas exchange, photosynthetic pigments, oxidative stress, osmolytes, antioxidants, and enzymes of sweetpotato plants. The results presented that Ni at higher levels (30 and 60 mg L-1) substantially reduced growth, biomass, and root morphological traits. The Pearson correlation analysis suggested that Ni toxicity causes oxidative injuries as persistent augmentation of hydrogen peroxide (H2O2) and malonaldehyde (MDA) and reduced RWC, gas exchange, and photosynthetic pigment. Furthermore, this study revealed that sweetpotato could tolerate moderate Ni treatment (up to 15 mg L-1) by reducing oxidative stress. The results also indicated that the increase in the activities of mentioned osmolytes, antioxidants, and enzymes is not sufficient to overcome the higher Ni toxicity. Based on these results, we suggest using low Ni-contaminated soil for better growth of sweetpotato and also could be used as a phytoremediator in moderate Ni-contaminated soil.

18.
Front Plant Sci ; 12: 660409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234795

RESUMO

Salt stress is an important environmental limiting factor. Water dropwort (Oenanthe javanica) is an important vegetable in East Asia; however, its phenotypic and physiological response is poorly explored. For this purpose, 48 cultivars of water dropwort were grown hydroponically and treated with 0, 50, 100, and 200 mm NaCl for 14 days. Than their phenotypic responses were evaluated, afterward, physiological studies were carried out in selected sensitive and tolerant cultivars. In the present study, the potential tolerant (V11E0022) and sensitive (V11E0135) cultivars were selected by screening 48 cultivars based on their phenotype under four different levels of salt concentrations (0, 50, 100, and 200 mm). The results depicted that plant height, number of branches and leaves were less effected in V11E0022, and most severe reduction was observed in V11E0135 in comparison with others. Than the changes in biomass, ion contents, accumulation of reactive oxygen species, and activities of antioxidant enzymes and non-enzymatic antioxidants were determined in the leaves and roots of the selected cultivars. The potential tolerant cultivar (V11E0022) showed less reduction of water content and demonstrated low levels of Na+ uptake, malondialdehyde, and hydrogen peroxide (H2O2) in both leaves and roots. Moreover, the tolerant cultivar (V11E0022) showed high antioxidant activities of ascorbate peroxidase (APX), superoxide dismutase, peroxidase, catalase (CAT), reduced glutathione (GSH), and high accumulation of proline and soluble sugars compared to the sensitive cultivar (V11E0135). These results suggest the potential tolerance of V11E0022 cultivar against salt stress with low detrimental effects and a good antioxidant defense system. The observations also suggest good antioxidant capacity of water dropwort against salt stress. The findings of the present study also suggest that the number of branches and leaves, GSH, proline, soluble sugars, APX, and CAT could serve as the efficient markers for understanding the defense mechanisms of water dropwort under the conditions of salt stress.

19.
Plants (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834849

RESUMO

In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.

20.
Front Plant Sci ; 12: 639639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679854

RESUMO

Blanching is a technique used in blocking sunlight for the production of tender, sweet, and delicious stems in the field. This technique is also used in water dropwort (Oenanthe javanica), an important vegetable in East Asia. In China, the steamed stems of water dropwort are prepared with boiled rice. However, the effect of blanching on the nutritional level and antioxidant capacity of water dropwort has not been explored yet. The current study aims to determine the nutrient contents and antioxidant capacities of five cultivars and select the best cultivar. They were mainly compared in terms of phenotypic, physiological, nutritional, and antioxidant levels after blanch cultivation. Results indicate that blanching significantly influenced the phenotype, physiology, and nutritional level of water dropwort in all cultivars. Although few parameters decreased with blanching, starch, sugars, vitamins, minerals, and antioxidant activities increased significantly in the blanched stems in mid- and post-blanching periods. The most noticeable changes were detected in post-blanching samples. Furthermore, the best cultivar (V11E0012) was identified among them. Therefore, blanched water dropwort could be consumed for achieving more nutraceuticals and antioxidants, and cultivar V11E0012 could be recommend for blanching cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA