Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(13): 8654-8659, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525300

RESUMO

Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.


Assuntos
Alumínio/química , Técnicas Biossensoriais/métodos , Óxido de Alumínio/química , Animais , Biotina/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Ouro/química , Humanos , Nanoestruturas/química , Refratometria , Soroalbumina Bovina/química , Estreptavidina/análise , Ressonância de Plasmônio de Superfície/métodos
2.
ACS Appl Mater Interfaces ; 16(1): 84-94, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38128131

RESUMO

A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.


Assuntos
Bicamadas Lipídicas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Proteínas , Gangliosídeos/química
3.
Chemosphere ; 336: 139156, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290514

RESUMO

A Surface Plasmon Resonance (SPR) biosensor based on an inhibition immunoassay was developed for the detection of diclofenac (DCF) in aqueous solution. Due to the small size of DCF, an hapten-protein conjugate was produced by coupling DCF to bovine serum albumin (BSA). DCF-BSA conjugate formation was confirmed via MALDI-TOF mass spectrometry. The resulting conjugate was immobilized onto the surface of a sensor fabricated via e-beam deposition of a 2 nm chromium adhesion layer followed by a 50 nm gold layer onto precleaned BK7 glass slides. Immobilization onto the nano thin gold surface was accomplished by covalent amide linkage through a self-assembled monolayer. Samples were composed of a mixture of antibody at a fixed concentration and DCF at different known concentrations in deionized water, causing the inhibition of anti-DCF on the sensor. The DCF-BSA was obtained with a ratio of 3 DCF molecules per BSA. A calibration curve was performed using concentrations between 2 and 32 µg L-1. The curve was fitted using the Boltzmann equation, reaching a limit of detection (LOD) of 3.15 µg L-1 and limit of quantification (LOQ) of 10.52 µg L-1, the inter-day precision was calculated and an RSD value of 1.96% was obtained; and analysis time of 10 min. The developed biosensor is a preliminary approach to the detection of DCF in environmental water samples, and the first SPR biosensor developed for DCF detection using a hapten-protein conjugate.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Diclofenaco , Água , Imunoensaio/métodos , Haptenos , Soroalbumina Bovina , Ouro/química
4.
ACS Sens ; 5(11): 3617-3626, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115236

RESUMO

Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheaths of nerve cells in the central nervous system. An individual suffering from MS produces increased levels of antibodies that target cell membrane components, such as phospholipids, gangliosides, and membrane proteins. Among them, anti-ganglioside antibodies are considered as important biomarkers to differentiate MS from other diseases that exhibit similar symptoms. We report here a label-free method for detecting a series of antibodies against gangliosides in serum by surface plasmon resonance imaging (SPRi) in combination with a carbohydrate microarray. The ganglioside array was fabricated with a plasmonically tuned, background-free biochip, and coated with a perfluorodecyltrichlorosilane (PFDTS) layer for antigen attachment as a self-assembled pseudo-myelin sheath. The chip was characterized with AFM and matrix-assisted laser desorption ionization mass spectrometry, demonstrating effective functionalization of the surface. SPRi measurements of patients' mimicking blood samples were conducted. A multiplexed detection of antibodies for anti-GT1b, anti-GM1, and anti-GA1 in serum was demonstrated, with a working range of 1 to 100 ng/mL, suggesting that it is well suited for clinical assessment of antibody abnormality in MS patients. Statistical analyses, including PLS-DA and PCA show the array allows comprehensive characterization of cross reactivity patterns between the MS specific antibodies and can generate a wide range of information compared to traditional end point assays. This work uses PFDTS surface functionalization and enables direct MS biomarker detection in serum, offering a powerful alternative for MS assessment and potentially improved patient care.


Assuntos
Esclerose Múltipla , Ressonância de Plasmônio de Superfície , Biomarcadores , Gangliosídeos , Humanos , Esclerose Múltipla/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA