Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(9): 3634-3647, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995941

RESUMO

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Proteínas Proto-Oncogênicas , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Mutação/genética , Fenótipo , Medula Espinal/patologia
2.
Lung ; 201(6): 591-601, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934242

RESUMO

PURPOSE: Acute rejection is a frequent complication among lung transplant recipients and poses substantial therapeutic challenges. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme responsible for the inactivation of prostaglandin E2 (PGE2), has recently been implicated in inflammatory lung diseases. However, the role of 15-PGDH in lung transplantation rejection remains elusive. The present study was undertaken to examine the expression of 15-PGDH in rejected lung allografts and whether inhibition of 15-PGDH ameliorates acute lung allograft rejection. METHODS: Orthotopic mouse lung transplantations were performed between donor and recipient mice of the same strain or allogeneic mismatched pairs. The expression of 15-PGDH in mouse lung grafts was measured. The efficacy of a selective 15-PGDH inhibitor (SW033291) in ameliorating acute rejection was assessed through histopathological examination, micro-CT imaging, and pulmonary function tests. Additionally, the mechanism underlying the effects of SW033291 treatment was explored using CD8+ T cells isolated from mouse lung allografts. RESULTS: Increased 15-PGDH expression was observed in rejected allografts and allogeneic CD8+ T cells. Treatment with SW033291 led to an accumulation of PGE2, modulation of CD8+ T-cell responses and mitochondrial activity, and improved allograft function and survival. CONCLUSION: Our study provides new insights into the role of 15-PGDH in acute lung rejection and highlights the therapeutic potential of inhibiting 15-PGDH for enhancing graft survival. The accumulation of PGE2 and modulation of CD8+ T-cell responses represent potential mechanisms underlying the benefits of 15-PGDH inhibition in this model. Our findings provide impetus for further exploring 15-PGDH as a target for improving lung transplantation outcomes.


Assuntos
Dinoprostona , Prostaglandinas , Camundongos , Animais , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Linfócitos T CD8-Positivos , Pulmão/patologia , Rejeição de Enxerto/prevenção & controle , Aloenxertos/metabolismo , Camundongos Endogâmicos C57BL
3.
Neuroimage ; 237: 118133, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951515

RESUMO

Accurate epileptogenic zone (EZ) or seizure onset zone (SOZ) localization is crucial for epilepsy surgery optimization. Previous animal and human studies on epilepsy have reported that changes in blood oxygen level-dependent (BOLD) signals induced by epileptic events could be used as diagnostic markers for EZ or SOZ localization. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) recording is gaining interest as a non-invasive tool for preoperative epilepsy evaluation. However, EEG-fMRI studies have reported inconsistent and ambiguous findings. Therefore, it remains unclear whether BOLD responses can be used for accurate EZ or SOZ localization. In this study, we used simultaneous EEG-fMRI recording in a rat model of 4-aminopyridine-induced acute focal seizures to assess the spatial concordance between individual BOLD responses and the SOZ. This was to determine the optimal use of simultaneous EEG-fMRI recording in the SOZ localization. We observed a high spatial consistency between BOLD responses and the SOZ. Further, dynamic BOLD responses were consistent with the regions where the seizures were propagated. These results suggested that simultaneous EEG-fMRI recording could be used as a noninvasive clinical diagnostic technique for localizing the EZ or SOZ and could be an effective tool for mapping epileptic networks.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Convulsões/fisiopatologia , Animais , Córtex Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsias Parciais/diagnóstico por imagem , Masculino , Rede Nervosa/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Convulsões/diagnóstico por imagem
4.
Neuromodulation ; 24(2): 220-228, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32886865

RESUMO

OBJECTIVE: Subthalamic deep brain stimulation (STN-DBS) could be an effective alternative treatment for patients with Parkinson's disease (PD). However, the mechanisms of deep brain stimulation (DBS) at different frequencies are still unclear. In this study, diffusion tensor imaging (DTI) was used to detect parameter changes in different regions of rat brains after DBS, and rat exercise capacity and brain tissue immunohistochemistry were evaluated. MATERIALS AND METHODS: The 6-hydroxydopamine-induced hemi-parkinsonian rat models were made and divided into four groups: a control group, sham group, low-frequency group, and high-frequency group. Low-frequency (30 Hz) and high-frequency (130 Hz) DBS were given to the STN in rats. First, an open-field experiment was used to evaluate changes in exercise performance. Then, the DTI was used to measure parameter changes in the substantia nigra (SN). Finally, immunohistochemistry was used to analyze the expression of tyrosine hydroxylase (TH), NeuN, and α-synuclein (α-syn) in the SN in the rats. RESULTS: There were significant differences in movement distance changes between the high-frequency stimulation (HFS) group and low-frequency stimulation (LFS) group, the HFS group and Ctrl group, and the Sham group and Ctrl group (all p < 0.05) after one week of stimulation. In the HFS group, the fractional anisotropy value of the SN was significantly higher than that of the other groups (p < 0.05), and the apparent diffusion coefficient and radial diffusion coefficient values were significantly lower than those of the other groups (p < 0.01). Immunohistochemical analysis showed that the integral optical density values of SN TH staining (p < 0.01) and NeuN staining (p < 0.05) in the HFS group were both significantly higher than those in the other groups. CONCLUSION: STN-HFS (130 Hz) and sham operation for one week can significantly improve the exercise performance of PD rats. The exercise performance of PD rats in LFS group (30 Hz) is worse compared with HFS group (130 Hz). HFS plays a role in neuroprotection and improvement of exercise performance of PD rats. Moreover, DTI can be used as an effective technique to assess the therapeutic effects and severity of PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Animais , Imagem de Tensor de Difusão , Humanos , Oxidopamina/toxicidade , Doença de Parkinson/terapia , Ratos
5.
Neurobiol Dis ; 146: 105091, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979506

RESUMO

Enriched environment (EE) with a complex combination of sensorimotor, cognitive and social stimulations has been shown to enhance brain plasticity and improve recovery of functions in animal models of stroke. The present study extended these findings by assessing whether the three-phase EE intervention paradigm would improve neurovascular remodeling following ischemic stroke. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO). A three-phase EE intervention paradigm was designed in terms of the different periods of cerebral ischemia by periodically rearranging the EE cage. Morris water maze (MWM) tests were performed to evaluate the learning and memory function. Multimodal MRI was applied to examine alterations to brain structures, intracranial vessels, and cerebral perfusion on the 31st day after MCAO. The changes of capillaries ultrastructure were examined by transmission electron microscope. Double-immunofluorescent staining was used to evaluate neurogenesis and angiogenesis. The expression of angiogenesis-related factors and neurovascular remodeling related signaling pathways including Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/ß-catenin and the axon guidance molecules were detected by Western blot analysis. MRI measurements revealed that EE treatment significantly increased survival volume of cortex and striatum, improved cerebral blood flow (CBF), amplified anterior azygos cerebral artery (azACA), ipsilateral internal carotid artery (ICA) and anterior communicating artery (AComA) vessel signal compared with standard housed rats (IS). Consistent with these findings, EE reduced ischemic BBB damage of capillary, enhanced endogenous angiogenesis and modified the expression of VEGF, Ang-1 or Ang-2 in ischemic rats. Additionally, this proangiogenic effect was consistent with the increased progenitor cell proliferation and neuronal differentiation in the peri-infarct cortex and striatum after EE intervention. Specifically, EE intervention paradigm markedly increased expression of phosphorylated PI3K, AKT and GSK-3, but reduced phosphorylated ß-catenin. Moreover, the axon guidance proteins expression level was significant higher in EE group. In parallel to these findings, EE significantly enhanced recovery of lost spatial learning memory function in MCAO rats without affecting infarct size. Together, MRI findings along with histological results strongly supported that the three-phase EE paradigm benefited neurovascular reorganization and thereby improved poststroke cognitive function. Moreover, our findings suggest that this type of EE paradigm induced neurogenesis and angiogenesis, at least in part, via regulating PI3K/AKT/GSK-3/ß-catenin signaling pathway and activation of the intrinsic axonal guidance molecules in animal models of ischemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Meio Ambiente , AVC Isquêmico/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
6.
Neurobiol Learn Mem ; 168: 107141, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857218

RESUMO

The present study investigated the effects of circadian rhythm disorder (CRD) on the hippocampus of SHR and WKY rats. Male SHR rats (n = 27) and WKY rats (n = 27) were randomly divided into six groups: SHR and WKY normal (N)CR, SHR and WKY CRD 16/8 (CRD16/8), and SHR and WKY CRD 12/12 (CRD12/12). Activity patterns were adjusted using different photoperiods over 90 days and any changes were recorded. Rats were tested in the Morris water maze and in a novel object recognition experiment; serologic analysis, magnetic resonance imaging (diffusion tensor imaging + arterial spin labeling), hippocampal Nissl staining, Fluoro-Jade B staining, and immunohistochemistry were also performed. The results showed that both types of inverted photoperiod reduced CR amplitude and prolonged the circadian period. CRD and hypertension reduced memory performance and novel object recognition and preference. The decreases in memory and preference indices were greater in rats in the CRD12/12 group compared to the CRD16/8 group. CRD and hypertension decreased fractional anisotropy values, the number of neurons and astrocytes in the hippocampus, and the expression of brain-derived neurotrophic factor and synapsin 1; it also enhanced the degeneration of neurons and microglia and reduced blood flow in the hippocampus, and increased nuclear factor κB, caspase, neuron-specific enolase, and interleukin-6 levels. These findings reveal a biological basis for the link between CRD and cognitive decline, which has implications for CRD caused by shift work and other factors.


Assuntos
Transtornos Cronobiológicos/patologia , Transtornos Cronobiológicos/fisiopatologia , Hipocampo/patologia , Animais , Transtornos Cronobiológicos/complicações , Transtornos Cronobiológicos/psicologia , Hipertensão/complicações , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Especificidade da Espécie
7.
Neuroradiology ; 59(12): 1203-1212, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856389

RESUMO

PURPOSE: The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. METHODS: Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. RESULTS: Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1H MRS parameters were observed between day 1 and day 3. CONCLUSION: Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Anisotropia , Química Encefálica , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Ratos , Ratos Wistar
8.
Neuroradiology ; 58(6): 607-614, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26931783

RESUMO

INTRODUCTION: Diffusion tensor imaging (DTI) as a potential technology has been used in spinal cord injury (SCI) studies, but the longitudinal evaluation of DTI parameters after SCI, and the correlation between DTI parameters and locomotor outcomes need to be defined. METHODS: Adult Wistar rats (n = 6) underwent traumatic thoracic cord contusion by an NYU impactor. DTI and Basso-Beattie-Bresnahan datasets were collected pre-SCI and 1, 3, 7, 14, and 84 days post-SCI. Diffusion tensor tractography (DTT) of the spinal cord was also generated. Fractional anisotropy (FA) and connection rate of fibers at the injury epicenter and at 5 mm rostral/caudal to the epicenter were calculated. The variations of these parameters after SCI were observed by one-way analysis of variance and the correlations between these parameters and motor function were explored by Pearson's correlation. RESULTS: FA at the epicenter decreased most remarkably on day 1 post-SCI (from 0.780 ± 0.012 to 0.330 ± 0.015), and continued to decrease slightly by day 3 post-SCI (0.313 ± 0.015), while other parameters decreased significantly over the first 3 days after SCI. DTT showed residual fibers concentrated on ventral and ventrolateral sides of the cord. Moreover, FA at the epicenter exhibited the strongest correlation (r = 0.887, p = 0.000) with the locomotion performance. CONCLUSION: FA was sensitive to degeneration in white matter and DTT could directly reflect the distribution of the residual white matter. Moreover, days 1 to 3 post-SCI may be the optimal time window for SCI examination and therapy.


Assuntos
Envelhecimento/patologia , Imagem de Tensor de Difusão/métodos , Índice de Gravidade de Doença , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Animais , Progressão da Doença , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Traumatismos da Medula Espinal/fisiopatologia , Técnica de Subtração , Substância Branca/fisiopatologia
9.
BMC Complement Altern Med ; 16: 198, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391841

RESUMO

BACKGROUND: Buyang Huanwu Decoction (BYHWD) is a Traditional Chinese Medicine (TCM) formula for treating stroke-induced disability. Xiaoshuan enteric-coated capsule (XSECC), derived from the formula BYHWD, is a drug approved by the China Food and Drug Administration (CFDA) for stroke management. To further investigate the potential protective effects of XSECC on neurovascular functions, we endeavour to monitor the neurovascular functions using multimodal magnetic resonance imaging (MRI) and evaluated histopathological changes of neurovascular unit (NVU) after stroke. METHODS: Ischemic stroke was induced by permanent middle cerebral artery occlusion (pMCAO). XSECC (420 mg/kg) was orally administered 2 h after stroke and daily thereafter. T2-weighted imaging (T2WI), T2 relaxometry mapping and diffusion tensor imaging (DTI) were used to measure cerebral infarct volume, edema and white matter fiber integrity, respectively. Neurochemical metabolite levels were monitored by (1)H-magnetic resonance spectroscopy ((1)H-MRS). Arterial spin labeling (ASL) - cerebral blood flow (CBF) measurements and structural magnetic resonance angiography (MRA) images provided real-time and dynamic information about vascular hemodynamic dysfunction on the 3rd, 7th and 14th days after pMCAO. At the last imaging time point, immunohistochemistry, immunofluorescence as well as transmission electron microscopy (TEM) were used to test the microscopic and ultrastructural changes of NVU. RESULTS: T2WI, T2 relaxometry mapping and Fractional anisotropy (FA) in DTI showed that XSECC significantly reduced cerebral infarct volume, relieved edema and alleviated nerve fiber injuries, respectively. (1)H-MRS provided information about improvement of neuronal/glial metabolism after XSECC treatment. Moreover, ASL - CBF measurements combined with MRA showed that XSECC significantly increased CBF and vascular signal strength and alleviated ischemia-induced morphological changes of arteries in ischemic hemisphere within 14 days after stroke. In addition, neuron specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), CD34 staining and TEM detection indicated that XSECC not only ameliorated neuronal injury, but also reduced endothelial damage and inhibited astrocyte proliferation. CONCLUSIONS: Our results suggested that XSECC has multi-target neurovascular protective effects on ischemic stroke, which may be closely correlated with the improvement of cerebral blood supply and neuronal/glial metabolism.


Assuntos
Infarto Cerebral/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Edema Encefálico/fisiopatologia , Cápsulas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Imageamento por Ressonância Magnética , Masculino , Fibras Nervosas/efeitos dos fármacos , Fármacos Neuroprotetores/química , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 17(10)2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27763550

RESUMO

Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Precursor de Proteína beta-Amiloide/genética , Encéfalo/diagnóstico por imagem , Transtornos do Metabolismo de Glucose/diagnóstico por imagem , Presenilina-1/genética , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18/análise , Glucose/análise , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/genética , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Aprendizagem em Labirinto , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Tomografia por Emissão de Pósitrons
11.
CNS Neurosci Ther ; 30(3): e14466, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37752881

RESUMO

AIM: The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS: Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS: Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS: Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.


Assuntos
Conexina 43 , Acidente Vascular Cerebral , Ratos , Animais , Conexina 43/metabolismo , Imageamento por Ressonância Magnética , Meio Ambiente , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Hipocampo/metabolismo , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Aprendizagem em Labirinto/fisiologia
12.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256835

RESUMO

Cotton is one of the most economically important crops in the world, and drought is a key abiotic factor that can significantly reduce cotton yield. MADS-box transcription factors play essential roles in various aspects of plant growth and development as well as responses to biotic and abiotic stress. However, the use of MADS-box transcription factors to regulate water stress responses has not been fully explored in cotton. Here, we showed that GhAGL16 acts as a negative regulator of water deficit in cotton, at least in part by regulating ABA signaling. GhAGL16-overexpressing (GhAGL16-OE) transgenic Arabidopsis had lower survival rates and relative water contents (RWCs) under water stress. Isolated leaves of GhAGL16-OE Arabidopsis had increased water loss rates, likely attributable to their increased stomatal density. GhAGL16-OE Arabidopsis also showed reduced primary root lengths in response to mannitol treatment and decreased sensitivity of seed germination to ABA treatment. By contrast, silencing GhAGL16 in cotton enhanced tolerance to water deficit by increasing proline (Pro) content, increasing superoxide dismutase (SOD) and peroxidase (POD) activities, and reducing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents under water stress. Subcellular localization and transcriptional activation assays confirmed that GhAGL16 is a nuclear protein that lacks transcriptional self-activation activity. The expression of ABA biosynthesis-related genes (GhNCED3/7/14), a catabolism-related gene (GhCYP707A), and a gene related to the ABA signaling pathway (GhABF4) was altered in GhAGL16-silenced plants. Taken together, our data demonstrate that GhAGL16 plays an important role in cotton resistance to water stress.

13.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741020

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Assuntos
Encéfalo , Órgão Subcomissural , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/embriologia , Órgão Subcomissural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Timosina/metabolismo , Timosina/genética , Camundongos Transgênicos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Neurônios/metabolismo , Movimento Celular/fisiologia , Peptídeos/metabolismo , Camundongos Endogâmicos C57BL
14.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585720

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. To explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3, and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely thymosin beta 4, thymosin beta 10, and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

15.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166842, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558008

RESUMO

Lung fibrosis is a devastating outcome of various diffuse parenchymal lung diseases. Despite rigorous research efforts, the mechanisms that propagate its progressive and nonresolving nature remain enigmatic. Oxidative stress has been implicated in the pathogenesis of lung fibrosis. However, the role of extracellular redox state in disease progression and resolution remains largely unexplored. Here, we show that compartmentalized control over extracellular reactive oxygen species (ROS) by aerosolized delivery of recombinant extracellular superoxide dismutase (ECSOD) suppresses an established bleomycin-induced fibrotic process in mice. Further analysis of publicly available microarray, RNA-seq and single-cell RNAseq datasets reveals a significant decrease in ECSOD expression in fibrotic lung tissues that can be spontaneously restored during fibrosis resolution. Therefore, we investigate the effect of siRNA-mediated ECSOD depletion during the established fibrotic phase on the self-limiting nature of the bleomycin mouse model. Our results demonstrate that in vivo knockdown of ECSOD in mouse fibrotic lungs impairs fibrosis resolution. Mechanistically, we demonstrate that transforming growth factor (TGF)-ß1 downregulates endogenous ECSOD expression, leading to the accumulation of extracellular superoxide via Smad-mediated signaling and the activation of additional stores of latent TGF-ß1. In addition, depletion of endogenous ECSOD during the fibrotic phase in the bleomycin model induces an apoptosis-resistant phenotype in lung fibroblasts through unrestricted Akt signaling. Taken together, our data strongly support the critical role of extracellular redox state in fibrosis persistence and resolution. Based on these findings, we propose that compartment-specific control over extracellular ROS may be a potential therapeutic strategy for managing fibrotic lung disorders.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose , Bleomicina , Oxirredução
16.
Neurochem Int ; 170: 105607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657766

RESUMO

Ischemic stroke results in demyelination that underlies neurological disfunction. Promoting oligodendrogenesis will rescue the injured axons and accelerate remyelination after stroke. Microglia react to ischemia/hypoxia and polarize to M1/M2 phenotypes influencing myelin injury and repair. Tetramethylpyrazine (TMP) has neuroprotective effects in treating cerebrovascular disorders. This study aims to evaluate whether TMP promotes the renovation of damaged brain tissues especially on remyelination and modulates microglia phenotypes following ischemic stroke. Here magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI) and histopathological evaluation are performed to characterize the process of demyelination and remyelination. Immunofluorescence staining is used to prove oligodendrogenesis and microglial polarization. Western blotting is conducted to examine interleukin (IL)-6, IL-10, transforming growth factor ß (TGF-ß) and Janus protein tyrosine kinase (JAK) 2-signal transducer and activator of transcription (STAT) 1/3-glycogen synthase kinase (GSK) 3-nuclear transcription factor κB (NFκB) signals. Results show TMP alleviates the injury of axons and myelin sheath, increases NG2+, Ki67+/NG2+, CNPase+, Ki67+/CNPase+, Iba1+/Arg-1+ cells and decreases Iba1+ and Iba1+/CD16+ cells in periinfarctions of rats. Particularly, TMP downregulates IL-6 and upregulates IL-10 and TGF-ß expressions, besides, enhances JAK2-STAT3 and suppresses STAT1-GSK3-NFκB activation in middle cerebral artery occlusion (MCAo) rats. Then we demonstrate that TMP reverses M1/M2 phenotype via JAK2-STAT1/3 and GSK3-NFκB pathways in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ)-stimulated BV2 microglia. Blocking JAK2 with AG490 counteracts TMP's facilitation on M2 polarization of microglia. This study warrants the promising therapy for stroke with TMP treatment.

17.
Neurosci Bull ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055107

RESUMO

The three-phase Enriched Environment (EE) paradigm has been shown to promote post-stroke functional improvement, but the neuronal mechanisms are still unclear. In this study, we applied a multimodal neuroimaging protocol combining magnetic resonance imaging (MRI) and positron emission tomography (PET) to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex. Rats were subjected to permanent middle cerebral artery occlusion. The motor function of the rats was examined using the DigiGait test. MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex. [18F]-fluorodeoxyglucose PET was used to detect glucose metabolism. Blood oxygen level-dependent (BOLD)-functional MRI (fMRI) was used to identify the regional brain activity and functional connectivity (FC). In addition, the expression of neuroplasticity-related signaling pathways including neurotrophic factors (BDNF/CREB), axonal guidance proteins (Robo1/Slit2), and axonal growth-inhibitory proteins (NogoA/NgR) as well as downstream proteins (RhoA/ROCK) in the bilateral sensorimotor cortex were measured by Western blots. Our results showed the three-phase EE improved the walking ability. Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex. PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention. Specifically, the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex. In addition, FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention. In addition, a strong correlation was found between increased functional connectivity and improved motor performance of limbs. Specifically, EE regulated the expression of neuroplasticity-related signaling, involving BDNF/CREB, Slit2/Robo1, as well as the axonal growth-inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex. Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.

18.
Front Cell Neurosci ; 17: 1125412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051111

RESUMO

2,3,5,6-Tetramethylpyrazine (TMP) as an active ingredient extracted from a traditional Chinese herbal medicine Ligusticum chuanxiong Hort. has been proved to penetrate blood-brain barrier (BBB) and show neuroprotective effects on cerebral ischemia. However, whether TMP could regulate astrocytic reactivity to facilitate neurovascular restoration in the subacute ischemic stroke needs to be urgently verified. In this research, permanent occlusion of the middle cerebral artery (MCAO) model was conducted and TMP (10, 20, 40 mg/kg) was intraperitoneally administrated to rats once daily for 2 weeks. Neurological function was evaluated by motor deficit score (MDS). Magnetic resonance imaging (MRI) was implemented to analyze tissue injury and cerebral blood flow (CBF). Magnetic resonance angiography (MRA) was applied to exhibit vascular signals. Transmission electron microscopy (TEM) was performed to detect the neurovascular unit (NVU) ultrastructure. Haematoxylin and eosin (HE) staining was utilized to evaluate cerebral histopathological lesions. The neurogenesis, angiogenesis, A1/A2 reactivity, aquaporin 4 (AQP4) and connexin 43 (Cx43) of astrocytes were observed with immunofluorescent staining. Then FGF2/PI3K/AKT signals were measured by western blot. Findings revealed TMP ameliorated neurological functional recovery, preserved NVU integrity, and enhanced endogenous neurogenesis and angiogenesis of rats with subacute ischemia. Shifting A1 to A2 reactivity, suppressing excessive AQP4 and Cx43 expression of astrocytes, and activating FGF2/PI3K/AKT pathway might be potential mechanisms of promoting neurovascular restoration with TMP after ischemic stroke.

19.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736735

RESUMO

As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance-related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene.

20.
Int Immunopharmacol ; 113(Pt A): 109417, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461606

RESUMO

AIM: To determine the neuroprotective effects of fluoxetine on depression-like and motor behaviors in rats treated with lipopolysaccharide (LPS) and the mechanisms involved. METHODS: A rat model of depression in Parkinson's disease (dPD) was established by administering LPS (0.5 mg/kg, i.p.) for 4 days. The sucrose preference test (SPT), open field test (OFT), and rotarod test evaluated depression-like and motor behaviors. White matter fiber integrity and intrinsic activity in the brain were assessed using magnetic resonance imaging. For pathological and molecular expression detection, hematoxylin-eosin staining, immunohistochemistry, Luminex technology, western blotting, and quantitative real-time PCR were used. RESULTS: Fluoxetine increased the sucrose preference in the SPT, the horizontal and center distances in the OFT, and the standing time in the rotarod test. Fluoxetine also improved intrinsic activities and white matter fiber damage in the brain, increased c-Fos expression, reduced Iba-1 expression in the prefrontal cortex, hippocampus, and substantia nigra, and increased TH expression in the substantia nigra. Fluoxetine reduced the concentration of inflammatory cytokines (IL-1α, IL-6, TNF-α, and IFN-γ). The gene and protein expression of Notch1, Jagged1, Hes1, and Hes5 were significantly lower than the LPS group after treatment with fluoxetine. CONCLUSION: Fluoxetine plays neuroprotective effects in relieving LPS-induced depression-like and motor behaviors. The underlying mechanisms may be related to inhibiting microglial activation, regulating the Notch signaling pathway, and inhibiting the inflammatory response.


Assuntos
Lipopolissacarídeos , Fármacos Neuroprotetores , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fluoxetina/uso terapêutico , Doenças Neuroinflamatórias , Sacarose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA