Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Brain Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900359

RESUMO

Silicon dioxide nanoparticles (SiO2-NPs) can be found in many products, such as composites, paints, ceramics, consumer products, and food additives. We recently demonstrated that via breastfeeding, SiO2-NPs transfer to the offspring's brain, interfering negatively with hippocampus development. In this work, we evaluated the protective effect of grape seed extract (GSE) against the adverse effects of SiO2-NPs. After delivery, animals were administered 25 mg/kg SiO2-NPs with/without GSE (300 mg/kg) for 20 days (from 2nd to 21st days post-delivery) by gavage. SiO2-NPs increased malondialdehyde concentration and decreased antioxidant activity in the offspring's hippocampi. The mean number of dark neurons (DNs) was significantly higher in the hippocampi of the SiO2-NPs group, whereas the mean number of DCX + cells was significantly lower than in the control group. The offspring in the SiO2-NPs groups had a weak cognitive performance in adulthood. Interestingly, these adverse effects of SiO2-NPs were alleviated in the GSE-treated groups. Therefore, GSE can attenuate the damaging effects of maternal exposure to SiO2-NPs during lactation.

2.
Cell Mol Neurobiol ; 43(2): 455-467, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35107690

RESUMO

Neuroinflammation plays a crucial role in the development and progression of neurological disorders. MicroRNA-155 (miR-155), a miR is known to play in inflammatory responses, is associated with susceptibility to inflammatory neurological disorders and neurodegeneration, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis as well as epilepsy, stroke, and brain malignancies. MiR-155 damages the central nervous system (CNS) by enhancing the expression of pro-inflammatory cytokines, like IL-1ß, IL-6, TNF-α, and IRF3. It also disturbs the blood-brain barrier by decreasing junctional complex molecules such as claudin-1, annexin-2, syntenin-1, and dedicator of cytokinesis 1 (DOCK-1), a hallmark of many neurological disorders. This review discusses the molecular pathways which involve miR-155 as a critical component in the progression of neurological disorders, representing miR-155 as a viable therapeutic target.


Assuntos
Epilepsia , MicroRNAs , Esclerose Múltipla , Doença de Parkinson , Humanos , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , MicroRNAs/fisiologia
3.
Nutr Neurosci ; 26(5): 369-383, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35343876

RESUMO

Common neurological disorders, including neurodegenerative diseases, stroke, epilepsy, autism and psychiatric disorders, affect many people worldwide and threaten their lives and health by inducing movement disorders, behavioral disorders, or a combination of both. Oxidative stress and neuroinflammation play a central role in neuronal damage and neurological diseases induction and progression. In addition, protein homeostasis (proteostasis) impairment occurs in many neurodegenerative diseases, which plays a critical role in the progression of the pathology. Grape seed contains several flavonoids and non-flavonoids and exerts potent antioxidant and anti-inflammatory effects. In addition, polyphenols and flavanols can maintain cellular proteostasis. Since impaired proteostasis is closely involved in all amyloid diseases, particularly neurodegenerative diseases, grape seeds extract can be a valuable therapeutic agent. Therefore, this review discusses the protective and therapeutic mechanisms of grape seed against neurological disorders and, in the end, links GSE to microRNAs as future therapeutic developments.


Assuntos
Extrato de Sementes de Uva , Doenças do Sistema Nervoso , Proantocianidinas , Vitis , Humanos , Extrato de Sementes de Uva/uso terapêutico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Polifenóis/uso terapêutico , Encéfalo , Envelhecimento , Doenças do Sistema Nervoso/tratamento farmacológico , Sementes , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico
4.
Mol Med ; 28(1): 118, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138359

RESUMO

Spinal cord injury (SCI) is a devastating neurological state causing physical disability, psychological stress and financial burden. SCI global rate is estimated between 250,000 and 500,000 individuals every year, of which 60% of victims are young, healthy males between 15 and 35 years. A variety of pathological conditions such as neuroinflammation, mitochondrial dysfunction, apoptosis, glial scar formation, blood-spinal cord barrier disruption, and angiogenesis disruption occur after SCI leading to a limitation in recovery. MicroRNAs (miRs) are endogenous and non-coding RNAs consisting of 22 nucleotides that regulate 60% of all human genes and involve several normal physiological processes and pathological conditions. miR-21 is among the most highly expressed miRs and its expression has been shown to increase one day after SCI and this elevation is sustained up to 28 days after injury. Overexpression of miR-21 exerts many protective effects against SCI by inhibiting neuroinflammation, improving blood-spinal cord barrier function, regulating angiogenesis, and controlling glial scar formation. It also exhibits anti-apoptotic effects in SCI by down-regulating the expression of PTEN, Spry2, and PDCD4. This review provides a novel therapeutic perspective for miR-21 in SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Gliose/metabolismo , Gliose/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
5.
Nutr Neurosci ; 25(9): 1962-1972, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33970818

RESUMO

BACKGROUND: During the elderly, hippocampal neurogenesis and synaptogenesis reduce and dark neurons (DNs) increase, leading to cognitive impairment. It is believed that natural products can protect the neural cells and system by protecting from damages or promoting regeneration. Therefore, the effects of grape seed extract (GSE) on the hippocampus of aged mice were investigated in this study. METHODS: twelve old mice were divided into two groups of control and GSE. Animals in the GSE group received 300 mg/kg of GSE for eight weeks via gavage. At the end of treatment, cognition performance was evaluated by Morris water maze (MWM) and passive avoidance tests. Hippocampal neurogenesis, synaptogenesis and DNs production were evaluated with immunohistochemistry and histological evaluations on 5-micron coronal tissue sections. RESULTS: The hippocampal mean number of double cortin positive cells (DCX+) per unit area, as well as synaptophysin expression in the GSE group, were significantly higher than the control group (p < 0.01). The frequency of DNs in the GSE group was lower than the control group (p < 0.05). Behavioral tests showed that GSE improves memory and learning performance. CONCLUSION: Consuming GSE in the elderly can potentially alleviate the age-related reduction of hippocampal neurogenesis and synaptogenesis. It is also able to decrease hippocampal DNs production and increase memory and learning.


Assuntos
Extrato de Sementes de Uva , Animais , Extrato de Sementes de Uva/farmacologia , Hipocampo , Camundongos , Neurogênese , Neurônios , Sinaptofisina/farmacologia
6.
Metab Brain Dis ; 37(4): 889-900, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156154

RESUMO

Mitochondria are considered the only source of energy production within cells. This organelle is vital for neural function and survival by producing energy (adenosine triphosphate (ATP)) and regulating intracellular calcium. Mitochondrial dysfunction, which significantly contributes to both idiopathic and familial types of Parkinson's disease (PD), depletes cellular energy, disrupts homeostasis, and induces oxidative stress, leading to cell death. In recent years several natural products have been discovered to be protective against mitochondrial dysfunction. This review discusses the role of mitochondria in the progression of PD to define the path for using natural products to prevent and/or cure PD.


Assuntos
Produtos Biológicos , Doença de Parkinson , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Morte Celular , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle
7.
Toxicol Ind Health ; 38(1): 41-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35075925

RESUMO

Silicon dioxide nanoparticles (SiO2-NPs) are among the most widely used nanoparticles because of their chemical-physical properties. Since most brain maturation occurs in the neonatal period in humans and many mammals, it is important to understand how NPs may affect this process. This study tested the hypothesis that SiO2-NPs from treated dams could affect the hippocampus of neonatal rats during lactation. Twenty-four pregnant rats, after delivery, were divided into three groups of control, SiO2-NPs (25 mg/kg) and SiO2-NPs (100 mg/kg). The rats were treated from 2nd to 21st days post-delivery by gavage and the effects of these NPs were evaluated in the offspring's hippocampi to reveal the effects of maternal exposure to SiO2-NPs during lactation on the offspring's hippocampi. The offspring in the SiO2-NPs groups had higher malondialdehyde concentration and lower antioxidant activity in the hippocampi than the non-treated control group. The mean number of doublecortin positive (DCX+) cells and synaptophysin expression in the hippocampi of the SiO2-NPs groups were significantly lower than the control group, whereas the mean number of dark neurons was significantly higher. Also, animals in the SiO2-NPs groups had a weak cognitive performance in adulthood. In conclusion, maternal exposure to SiO2-NPs via breastfeeding could affect offspring's hippocampal neurogenesis and synaptogenesis, leading to impaired cognitive performance.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Exposição Materna/efeitos adversos , Nanopartículas/toxicidade , Neurogênese/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Feminino , Lactação , Gravidez , Ratos
8.
Metab Brain Dis ; 36(5): 927-937, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33656625

RESUMO

Parkinson's disease (PD) is a common and severe neurodegenerative disorder associated with a selective loss of dopaminergic neurons in substantia nigra pars compacta. The crucial role of oxidative stress and inflammation in PD onset and progression is evident. It has been proven that garlic extract (GE) protects the cells from oxidative stress, inflammation, mitochondrial dysfunction and apoptosis. That is, we aimed to investigate if GE reveals protective features on the preclinical model of PD. The study has been designed to evaluate both preventive (GE administered before 6-OHDA injection) and therapeutic (GE administered after 6-OHDA injection) effects of GE on the animal model. Forty male Wistar rats were divided into 4 groups including control, lesion, treatment I (received GE before 6-OHDA injection) and treatment II (received GE both before and after 6-OHDA injection). At the end of treatment, hanging, rotarod, open field and passive avoidance tests as well as immunohistochemistry were performed to evaluate the neuroprotective effects of garlic against PD. Our immunohistochemistry analysis revealed that the tyrosine hydroxylase positive cells (TH+) in GE treated groups were significantly higher (p˂0.001) than the lesion group. The motor deficiency significantly improved in hanging, rotarod, open-field and apomorphine-induced rotational tests. We observed an attenuation in memory impairment induced by PD on GE treated group. Therefore, we found that GE protects dopaminergic neurons in 6-OHDA-induced neurotoxicity and ameliorates movement disorders and behavioral deficits.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Alho , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Extratos Vegetais/farmacologia , Substância Negra/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Masculino , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Substância Negra/metabolismo
9.
Metab Brain Dis ; 33(3): 907-916, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29470767

RESUMO

Tramadol, a frequently used pain reliever drug, present neurotoxic effects associated to cognitive dysfunction. Moreover, crocin has been reported to have neuroprotective effects. The aim of this study was to assess crocin's capacity to protect learning, and memory abilities on tramadol-treated rats. A total of 35 rats were divided into five groups: Control, Saline, tramadol (50 mg/kg), tramadol + crocin(30 mg/kg), crocin groups and treated orally for 28 consecutive days. Morris water maze (MWM) and passive avoidance (PA) tests were done, followed by dissection of the rat's brains for toluidine blue and TUNEL staining. In MWM test, tramadol group spent lower time and traveled shorter distance in the target quadrant (Q1) (P < 0.05). On the other side, the traveled distance in tramadol-crocin group was higher than tramadol (P < 0.05). In PA test, both the delay for entering the dark, and the total time spent in the light compartment decreased in tramadol comparing to the control group (P < 0.05), while it increased in tramadol-crocin compared with the tramadol group (P < 0.05). In tramadol-treated animals, the dark neurons (DNs) and apoptotic cells in CA1, CA3 and DG increased (P < 0.05), while concurrent intake of crocin decreased the number of DNs and apoptotic cells in these areas (P < 0.05). Crocin was able to improve learning and memory of tramadol-treated rats and also decreased DNs and apoptotic cells in the hippocampus. Considering these results, the potential capacity of crocin for decreasing side effects of tramadol on the nervous system is suggested.


Assuntos
Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Tramadol/farmacologia , Animais , Antioxidantes/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Ratos Wistar
10.
Toxicol Ind Health ; 32(2): 221-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081627

RESUMO

Nanoscale titanium dioxide (TiO2), which is massively produced and widely used in living environment, seems to have a potential risk on human health. The central nervous system (CNS) is the potential susceptible target of nanoparticles, but the studies on this aspect are limited so far. The aim of this study was to evaluate the effects of exposure to TiO2 nanoparticles during lactation period on learning and memory of offspring. Lactating Wistar rats were exposed to TiO2 nanoparticles (100 mg/kg; gavage) for 21 days. The Morris water maze and passive avoidance tests showed that the exposure to TiO2 nanoparticles could significantly impair the memory and learning in the offspring. Therefore, the application of TiO2 nanoparticles and the effects of their exposure, especially during developmental period on human brain should be cautious.


Assuntos
Lactação , Exposição Materna/efeitos adversos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Nanopartículas/química , Titânio/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Nanopartículas Metálicas , Gravidez , Ratos , Ratos Wistar , Titânio/química
11.
Mol Neurobiol ; 60(4): 2062-2069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36596965

RESUMO

Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.


Assuntos
Isquemia Encefálica , MicroRNAs , Acidente Vascular Cerebral , Humanos , Células Endoteliais/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Infarto Cerebral/metabolismo , Barreira Hematoencefálica/metabolismo , MicroRNAs/genética , Infarto da Artéria Cerebral Média/metabolismo
12.
Rev Environ Health ; 37(1): 35-44, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33770832

RESUMO

Metal base nanoparticles are widely produced all over the world and used in many fields and products such as medicine, electronics, cosmetics, paints, ceramics, toys, kitchen utensils and toothpastes. They are able to enter the body through digestive, respiratory, and alimentary systems. These nanoparticles can also cross the blood brain barrier, enter the brain and aggregate in the hippocampus. After entering the hippocampus, they induce oxidative stress, neuro-inflammation, mitochondrial dysfunction, and gene expression alteration in hippocampal cells, which finally lead to neuronal apoptosis. Metal base nanoparticles can also affect hippocampal neurogenesis and synaptic plasticity that both of them play crucial role in memory and learning. On the one hand, hippocampal cells are severely vulnerable due to their high metabolic activity, and on the other hand, metal base nanoparticles have high potential to damage hippocampus through variety of mechanisms and affect its functions. This review discusses, in detail, nanoparticles' detrimental effects on the hippocampus in cellular, molecular and functional levels to reveal that according to the present information, which types of nanoparticles have more potential to induce hippocampal toxicity and psychiatric disorders and which types should be more evaluated in the future studies.


Assuntos
Transtornos Mentais , Nanopartículas Metálicas , Apoptose , Hipocampo/metabolismo , Humanos , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/metabolismo , Neurogênese/fisiologia
13.
Mol Neurobiol ; 59(5): 2694-2701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35156160

RESUMO

MicroRNAs (miRs) are regulatory RNAs with 18-25 nucleotides lengths involved in various biological processes. Some miRs, including miR-22, play an essential role in regulating neurological disorders. MiR-22 is a brain-enriched regulatory element involved in angiogenesis, energy supply, adjustment of ionic channels, and suppression of malignant cell proliferation, migration, and invasion. This article discusses the protective and therapeutic effects of miR-22 on neurological diseases and injuries, including cerebral ischemia, neurodegenerative diseases, epilepsy, and brain malignancies. We also correlated miR-22 with amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), panic disorders, schizophrenia, neural tube defect (anencephaly), and traumatic brain injury. This work provides a therapeutic perspective for miR-22 as a new approach in treating neurological disorders.


Assuntos
Esclerose Lateral Amiotrófica , Isquemia Encefálica , MicroRNAs , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Encéfalo/patologia , Isquemia Encefálica/patologia , Humanos , MicroRNAs/genética , Doenças Neurodegenerativas/patologia
14.
Avicenna J Phytomed ; 12(6): 614-626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583175

RESUMO

Objective: Neuroprotective and antioxidant effects of Ocimum basilicum (O. basilicum) against pentylenetetrazole (PTZ)-induced seizures were investigated. Materials and Methods: Mice were divided as follows: (Group 1) Control, (Group 2) PTZ, (Groups 3-5) 50,100 and 200 mg/kg hydro-ethanolic (HE) extract, and (Groups 6-8) 200 mg/kg ethyl-acetate (EAF), N-hexane (NHF) and water (WF) fractions. Minimal clonic seizures (MCS) and generalized tonic-clonic seizures (GTCS) latencies were measured. Biochemical and histological studies were done. Results: MCS and GTCS latency in HE groups were longer than the PTZ group (p<0.05 to p<0.001). EAF and NHF prolonged the onset of MCS and GTCS (p<0.001). PTZ increased malondialdehyde (MDA) and dark neuron (DN) production while decreased thiol, catalase (CAT) and superoxide dismutase (SOD) (p<0.05 to p<0.001). Pre-treatment by HE and all fractions of the plant attenuated MDA and DN while increased thiol, CAT and SOD (p<0.01 to p<0.001). Conclusion: EAF and NHF had anticonvulsant properties. The extract and fractions protected the brain from PTZ-induced oxidative damages and showed neuroprotective effects.

15.
Nanotoxicology ; 15(7): 951-972, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143944

RESUMO

Lanthanum nanoparticles are widely used in industry, agriculture, and biomedicine. Over 900 kg of lanthanum is annually released into the environment only in Europe, 50 times higher than the metals, mercury, and cadmium's environmental spread. Human health risk associated with long-term exposure to the abundant lanthanum nanoparticles is a concerning environmental issue. Due to lanthanum's ability to disrupt the main biological barriers and interrupt various cells' hemostasis, they seem to cause severe disruptions to various tissues. This review opens a new perspective regarding the cellular and molecular interaction of nanosized and ionic lanthanum with the possible toxicity on the nervous system and other tissues that would show lanthanum nanoparticles' potential danger to follow in toxicological science.


Assuntos
Lantânio , Nanopartículas , Humanos , Lantânio/toxicidade , Metais , Nanopartículas/toxicidade
16.
Neuropeptides ; 89: 102183, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333368

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks. Fifty-four male offspring were randomly divided into three age groups, postnatal days (P) 0, 7, and 14. Real-time-PCR, western blotting, and immunohistochemistry (IHC) analyses were employed to examine and compare the hippocampal expression of the NMDA receptor subunits. The highest mRNA expression of NR1 and NR2B subunits was observed at P7, regardless of its laterality. The mRNA expression of both subunits in the right hippocampus was significantly higher than that of the left one at P0 and P7. Similarly, the highest protein level expression of NR1 and NR2B subunits was also observed at P7 in both sides hippocampi. Although the protein expression of NR1 was significantly higher on the right side in all studied days, the NR2B was significantly higher in the right hippocampus only at P7. The analysis of optical density (OD) has shown a marked increase in the distribution pattern of the NR1 and NR2B subunits at P7 in all hippocampal subregions. In conclusion, there is a marked right-left asymmetry in the expression of NR1 and NR2B subunits in the developing rat hippocampus, which might be considered as a probable mechanism for the lateral differences in the structure and function of the hippocampus in rats.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Animais Recém-Nascidos , Masculino , Ratos , Receptores de N-Metil-D-Aspartato/genética
17.
Rev Environ Health ; 35(4): 545-556, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32681785

RESUMO

Nowadays, different kinds of nanoparticles (NPs) are produced around the world and used in many fields and products. NPs can enter the body and aggregate in the various organs including brain. They can damage neurons, in particular dopaminergic neurons in the substantia nigra (SN) and striatal neurons which their lesion is associated with Parkinson's disease (PD). So, NPs can have a role in PD induction along with other agents and factors. PD is the second most common neurodegenerative disease in the world, and in patients, its symptoms progressively worsen day by day through different pathways including oxidative stress, neuroinflammation, mitochondrial dysfunction, α-synuclein increasing and aggregation, apoptosis and reduction of tyrosine hydroxylase positive cells. Unfortunately, there is no effective treatment for PD. So, prevention of this disease is very important. On the other hand, without having sufficient information about PD inducers, prevention of this disease would not be possible. Therefore, we need to have sufficient information about things we contact with them in daily life. Since, NPs are widely used in different products especially in consumer products, and they can enter to the brain easily, in this review the toxicity effects of metal and metal oxide NPs have been evaluated in molecular and cellular levels to determine potential of different kinds of NPs in development of PD.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Doença de Parkinson Secundária/induzido quimicamente , Humanos , Nanopartículas Metálicas/classificação , Doença de Parkinson
18.
Int J Dev Neurosci ; 80(4): 303-318, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32198948

RESUMO

The purpose of this study was to describe the distinct regional distribution patterns of expression of the α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) and their left-right lateralisation in the rat hippocampus during the first 2 weeks of postnatal (P) development. Eighteen male pups were randomly divided into three groups: P0, P7, and P14. After removing the newborn brains, real-time polymerase chain reaction, western blot, and immunohistochemistry techniques were used to evaluate expression of the receptors. Results indicated that the expression profile of these receptors were time- and spatially dependent. A significant increase was observed in the distribution of α7 and α4 nAChR subunits in the developing rat hippocampus from P0 to P7 (p < .001); however, there was a significant decrease from P7 to P14 (p < .05). As a spatial effect, the highest optical density (OD) was observed in the CA3 and CA2 regions of the hippocampus, while the lowest OD was in the dentate gyrus. Moreover, the distribution of α7 and α4 nAChR subunits in the left hippocampus was significantly higher than their counterparts in the right (p < .05). From these data, the expression patterns of α7 and α4 nAChR subunits exhibited left-right asymmetry in the developing rat hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Região CA2 Hipocampal/crescimento & desenvolvimento , Região CA2 Hipocampal/metabolismo , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , DNA Complementar/biossíntese , Feminino , Lateralidade Funcional , Imuno-Histoquímica , Masculino , Gravidez , RNA/biossíntese , Ratos , Ratos Wistar , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
19.
Iran J Basic Med Sci ; 22(7): 745-751, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373295

RESUMO

OBJECTIVES: Widely used Titanium dioxide nanoparticles (TiO2) enter into the body and cause various organ damages. Therefore, we aimed to study the effect of TiO2 on the substantia nigra of midbrain. MATERIALS AND METHODS: 40 male BALB/c mice were randomly divided into five groups: three groups received TiO2 at doses of 10, 25, and 50 mg/kg, the fourth group received normal saline for 45 days by gavage, and control group (without intervention). Then, Motor tests including pole and hanging tests were done to investigate motor disorders. The animal brain was removed for histological purposes. Accordingly, immunohistochemistry was performed to detect tyrosine hydroxylase positive cells, and then toluidine blue staining was done to identify dark neurons in the substantia nigra. Eventually, the total number of these neurons were counted using stereological methods in different groups. RESULTS: The results showed that the time recorded for mice to turn completely downward on the pole in the TiO2-50 group increased and also the time recorded for animals to hang on the wire in the hanging test significantly decreased (P<0.05) in comparison with other groups. Also, the average number of tyrosine hydroxylase positive neurons in TiO2-25 and TiO2-50 groups significantly decreased as compared to the TiO2-10 and control groups (P<0.05). The total number of dark neurons in the TiO2-25 and TiO2-50 groups was substantially higher than the TiO2-10, control and normal saline groups (P<0.05). CONCLUSION: Our findings indicated that TiO2, depending on dose, can cause the destruction of dopaminergic neurons and consequently increase the risk of Parkinson's disease.

20.
Anat Sci Int ; 94(1): 119-127, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30159851

RESUMO

Parkinson's disease is caused by damage to substantia nigra dopaminergic neurons. Factors such as oxidative stress, inflammatory factors, and acetylcholinesterase activity may induce this disease. On the other hand, crocin-one of the active ingredients of saffron-has anti-oxidant and anti-inflammatory properties. This study was performed to evaluate the protective effect of crocin to decrease dopaminergic neuron damage and Parkinson's disease complications induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). A set of 24 male BALB/c Mice were divided randomly into four groups: (1) MPTP group receiving 30 mg/kg MPTP for 5 days; (2) MPTP + crocin group receiving 30 mg/kg MPTP for 5 days and 30 mg/kg crocin for 15 days; (3) NS group receiving normal saline for 5 days; and (4) NSIG group receiving normal saline intraperitoneally for 5 days and also normal saline by gavage for 15 days. After the treatment period, pole and hanging motor tests were performed in all groups. Then, the brains of all the animals were removed and fixed in formalin, prepared according to routine histologic methods and cut into sections of 5 µm thickness. Prepared sections were stained by immunohistochemistry techniques and toluidine blue to detect tyrosine-hydroxylase (TH)-positive neurons and dark neurons, respectively. Finally, the mean number of these cells were calculated by stereological methods and compared with the statistical tests in different groups. The results showed a significant increase in the time taken for the animal to fall from the pole in the MPTP group in comparison with other groups (P < 0.001). The time taken for them to stay on the wire in the hanging test decreased significantly in the MPTP group compared to the other groups (P < 0.001).,while in the MPTP + crocin group, the time to falling decreased (P < 0.05) and the time staying on the wire increased (P < 0.001) compared to the MPTP group. The number of TH-positive neurons in the MPTP group also decreased significantly in comparison with saline and MPTP + crocin groups (P < 0.001). The number of dark neuron sin the MPTP group increased significantly as compared with saline and the MPTP + Crocin groups (P < 0.001). Our results showed that crocin improves MPTP-induced Parkinson's disease complications and decreases cell death in the substantia nigra.


Assuntos
Carotenoides/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Substância Negra/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carotenoides/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Substância Negra/citologia , Substância Negra/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA