Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541839

RESUMO

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Assuntos
Vírus Gigantes/genética , Glicoproteínas/genética , Proteoma/análise , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Proteínas Virais/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Espectrometria de Massas , Pseudomonas aeruginosa/virologia
2.
J Virol ; 90(10): 5176-86, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26984725

RESUMO

UNLABELLED: The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Šin diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids-which develop into infectious virions-are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE: In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Capsídeo/ultraestrutura , Herpesvirus Humano 1/ultraestrutura , Capsídeo/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Empacotamento do DNA , Herpesvirus Humano 1/química , Vírion , Montagem de Vírus
3.
J Virol ; 86(21): 11931-4, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915822

RESUMO

Herpes simplex virus 1 (HSV-1) was shown to contain catalase, an enzyme able to detoxify hydrogen peroxide by converting it to water and oxygen. Studies with a catalase inhibitor indicated that virus-associated catalase can have a role in protecting the virus from oxidative inactivation. HSV-1 was found to be more sensitive to killing by hydrogen peroxide in the presence of a catalase inhibitor than in its absence. The results suggest a protective role for catalase during the time HSV-1 spends in the oxidizing environment outside a host cell.


Assuntos
Catalase/metabolismo , Desinfetantes/metabolismo , Desinfetantes/toxicidade , Herpesvirus Humano 1/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , Inibidores Enzimáticos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Oxigênio/metabolismo , Células Vero , Carga Viral , Inativação de Vírus/efeitos dos fármacos , Água/metabolismo
4.
J Virol ; 86(13): 7084-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532674

RESUMO

In the final stages of the herpes simplex virus 1 (HSV-1) life cycle, a viral nucleocapsid buds into a vesicle of trans-Golgi network (TGN)/endosome origin, acquiring an envelope and an outer vesicular membrane. The virus-containing vesicle then traffics to the plasma membrane where it fuses, exposing a mature virion. Although the process of directed egress has been studied in polarized epithelial cell lines, less work has been done in nonpolarized cell types. In this report, we describe a study of HSV-1 egress as it occurs in nonpolarized cells. The examination of infected Vero cells by electron, confocal, and total internal reflection fluorescence (TIRF) microscopy revealed that HSV-1 was released at specific pocket-like areas of the plasma membrane that were found along the substrate-adherent surface and cell-cell-adherent contacts. Both the membrane composition and cytoskeletal structure of egress sites were found to be modified by infection. The plasma membrane at virion release sites was heavily enriched in viral glycoproteins. Small glycoprotein patches formed early in infection, and virus became associated with these areas as they expanded. Glycoprotein-rich areas formed independently from virion trafficking as confirmed by the use of a UL25 mutant with a defect in capsid nuclear egress. The depolymerization of the cytoskeleton indicated that microtubules were important for the trafficking of virions and glycoproteins to release sites. In addition, the actin cytoskeleton was found to be necessary for maintaining the integrity of egress sites. When actin was depolymerized, the glycoprotein concentrations dispersed across the membrane, as did the surface-associated virus. Lastly, viral glycoprotein E appeared to function in a different manner in nonpolarized cells compared to previous studies of egress in polarized epithelial cells; the total amount of virus released at egress sites was slightly increased in infected Vero cells when gE was absent. However, gE was important for egress site formation, as Vero cells infected with gE deletion mutants formed glycoprotein patches that were significantly reduced in size. The results of this study are interpreted to indicate that the egress of HSV-1 in Vero cells is directed to virally induced, specialized egress sites that form along specific areas of the cell membrane.


Assuntos
Membrana Celular/virologia , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Liberação de Vírus , Animais , Chlorocebus aethiops , Citoesqueleto/metabolismo , Glicoproteínas/metabolismo , Herpesvirus Humano 1/crescimento & desenvolvimento , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Células Vero , Proteínas Virais/metabolismo
5.
J Virol ; 86(8): 4058-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345483

RESUMO

Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (∼100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.


Assuntos
Proteínas do Capsídeo/química , Herpesvirus Humano 1/química , Proteínas Virais/química , Sítios de Ligação , Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestrutura , Modelos Moleculares , Nucleocapsídeo/química , Nucleocapsídeo/ultraestrutura , Proteínas Virais/metabolismo , Vírion/química
6.
J Virol ; 84(18): 9408-14, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631146

RESUMO

The tegument of all herpesviruses contains a high-molecular-weight protein homologous to herpes simplex virus (HSV) UL36. This large (3,164 amino acids), essential, and multifunctional polypeptide is located on the capsid surface and present at 100 to 150 copies per virion. We have been testing the idea that UL36 is important for the structural organization of the tegument. UL36 is proposed to bind directly to the capsid with other tegument proteins bound indirectly by way of UL36. Here we report the results of studies carried out with HSV type 1-derived structures containing the capsid but lacking a membrane and depleted of all tegument proteins except UL36 and a second high-molecular-weight protein, UL37. Electron microscopic analysis demonstrated that, compared to capsids lacking a tegument, these capsids (called T36 capsids) had tufts of protein located at the vertices. Projecting from the tufts were thin, variably curved strands with lengths (15 to 70 nm) in some cases sufficient to extend across the entire thickness of the tegument (approximately 50 nm). Strands were sensitive to removal from the capsid by brief sonication, which also removed UL36 and UL37. The findings are interpreted to indicate that UL36 and UL37 are the components of the tufts and of the thin strands that extend from them. The strand lengths support the view that they could serve as organizing features for the tegument, as they have the potential to reach all parts of the tegument. The variably curved structure of the strands suggests they may be flexible, a property that could contribute to the deformable nature of the tegument.


Assuntos
Capsídeo/ultraestrutura , Herpesvirus Humano 1/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Chlorocebus aethiops , Herpesvirus Humano 1/ultraestrutura , Microscopia Eletrônica de Transmissão , Células Vero , Proteínas Estruturais Virais/metabolismo
7.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727359

RESUMO

Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Production of the virion starts with the assembly of an icosahedral procapsid, which includes DNA packaging proteins at a vertex, one of which is the dodecameric portal protein. The procapsid then undergoes maturation and DNA packaging through the portal, driven by a terminase complex. We used cryo-electron tomography to visualize the portal in procapsids and compare them to mature empty capsids. We found the portal located inside one vertex interacting with the scaffold protein in the procapsid. On maturation, the scaffold is cleaved and dissociates, the capsid angularizes, and the portal moves outward, interacting closely with the capsid shell. These transformations may provide a basis for the development of drugs to prevent HSV-1 infections.


Assuntos
Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Herpesvirus Humano 1/ultraestrutura , Proteínas Virais/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/genética , Herpesvirus Humano 1/metabolismo
8.
J Virol ; 83(16): 8082-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19494000

RESUMO

All herpesviruses have a layer of protein called the tegument that lies between the virion membrane and the capsid. The tegument consists of multiple, virus-encoded protein species that together can account for nearly half the total virus protein. To clarify the structure of the tegument and its attachment to the capsid, we used electron microscopy and protein analysis to examine the tegument of herpes simplex virus type 1 (HSV-1). Electron microscopic examination of intact virions revealed that whereas the tegument was asymmetrically distributed around the capsid in extracellular virions, it was symmetrically arranged in cell-associated virus. Examination of virions after treatment with nonionic detergent demonstrated that: (i) in extracellular virus the tegument was resistant to removal with Triton X-100 (TX-100), whereas it was lost nearly completely when cell-associated virus was treated in the same way; (ii) the tegument in TX-100-treated extracellular virions was asymmetrically distributed around the capsid as it is in unextracted virus; and (iii) in some images, tegument was seen to be linked to the capsid by short, regularly spaced connectors. Further analysis was carried out with extracellular virus harvested from cells at different times after infection. It was observed that while the amount of tegument present in virions was not affected by time of harvest, the amount remaining after TX-100 treatment increased markedly as the time of harvest was increased from 24 h to 64 h postinfection. The results support the view that HSV-1 virions undergo a time-dependent change in which the tegument is transformed from a state in which it is symmetrically organized around the capsid and extractable with TX-100 to a state where it is asymmetrically arranged and resistant to extraction.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/ultraestrutura , Octoxinol/farmacologia , Fatores de Tempo , Células Vero , Proteínas Estruturais Virais/genética , Vírion/efeitos dos fármacos , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Montagem de Vírus/efeitos dos fármacos
9.
J Virol ; 83(4): 1660-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073727

RESUMO

Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.


Assuntos
Herpesvirus Humano 1/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Animais , Anticorpos/metabolismo , Anticorpos Antivirais/metabolismo , Chlorocebus aethiops , Inativação Gênica , Interações Hospedeiro-Patógeno , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Células Vero , Proteínas Estruturais Virais/antagonistas & inibidores
10.
J Virol ; 83(15): 7449-56, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19458005

RESUMO

Macrophages are an important target cell for infection with cytomegalovirus (CMV). A number of viral genes that either are expressed specifically in this cell type or function to optimize CMV replication in this host cell have now been identified. Among these is the murine CMV (MCMV) US22 gene family member M140, a nonessential early gene whose deletion (RVDelta140) leads to significant impairment in virus replication in differentiated macrophages. We have now determined that the defect in replication is at the stage of viral DNA encapsidation. Although the rate of RVDelta140 genome replication and extent of DNA cleavage were comparable to those for revertant virus, deletion of M140 resulted in a significant reduction in the number of viral capsids in the nucleus, and the viral DNA remained sensitive to DNase treatment. These data are indicative of incomplete virion assembly. Steady-state levels of both the major capsid protein (M86) and tegument protein M25 were reduced in the absence of the M140 protein (pM140). This effect may be related to the localization of pM140 to an aggresome-like, microtubule organizing center-associated structure that is known to target misfolded and overexpressed proteins for degradation. It appears, therefore, that pM140 indirectly influences MCMV capsid formation in differentiated macrophages by regulating the stability of viral structural proteins.


Assuntos
Capsídeo/metabolismo , Macrófagos/virologia , Família Multigênica , Muromegalovirus/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica , Camundongos , Muromegalovirus/genética , Células NIH 3T3 , Proteínas Virais/genética , Replicação Viral
11.
Viruses ; 12(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825132

RESUMO

"Giant" phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them "mottled capsids". Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a "twisted hook" conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.


Assuntos
Capsídeo/metabolismo , Vírus Gigantes/fisiologia , Fagos de Salmonella/fisiologia , Montagem de Vírus , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Empacotamento do DNA , Genoma Viral , Vírus Gigantes/genética , Vírus Gigantes/ultraestrutura , Salmonella/virologia , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
12.
J Virol ; 82(13): 6778-81, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18417585

RESUMO

The herpes simplex virus type 1 (HSV-1) portal is composed of a dodecamer of UL6 protein molecules whose incorporation into the capsid is mediated by interaction with the HSV-1 UL26.5 scaffold protein. Previous results with an in vitro capsid assembly assay demonstrated that nine amino acids (amino acids 143 to 151) of the UL26.5 protein are required for its interaction with UL6 and for incorporation of the portal complex into capsids. In the present study an HSV-1 mutant, bvFH411, was isolated and contained a deletion that removed the codons for UL26.5 amino acids 143 to 150. The mutant virus failed to produce infectious virus in noncomplementing cells, and only B capsids that contained only minor amounts of portal protein were made. These data corroborate our previous in vitro studies and demonstrate that amino acids 143 to 150 of UL26.5 are required for the formation of portal-containing HSV-1 capsids.


Assuntos
Capsídeo/metabolismo , Genoma Viral/genética , Herpesvirus Humano 1/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Primers do DNA/genética , Herpesvirus Humano 1/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Células Vero , Proteínas Virais/genética
13.
J Mol Biol ; 370(4): 633-42, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17540405

RESUMO

Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus.


Assuntos
Genoma Viral , Simplexvirus/genética , Simplexvirus/ultraestrutura , Proteínas do Capsídeo/metabolismo , DNA Viral , Microscopia Eletrônica de Transmissão , Ligação Proteica , Simplexvirus/metabolismo , Temperatura , Tripsina/metabolismo
14.
mBio ; 8(3)2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611252

RESUMO

Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions.IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant that accumulates PEVs in the perinuclear space, we were able to isolate PEVs in sufficient quantity for structural analysis by cryo-electron microscopy and tomography. The findings not only elucidate the maturation pathway of an important human pathogen but also have implications for cellular processes that involve the trafficking of large macromolecular complexes.


Assuntos
Herpesvirus Humano 1/fisiologia , Vírion/fisiologia , Liberação de Vírus , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular , Chlorocebus aethiops , Microscopia Crioeletrônica , Herpesvirus Humano 1/genética , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Fosforilação , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus
15.
mBio ; 6(5): e01525-15, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26443463

RESUMO

UNLABELLED: The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assembly also relies on an external scaffolding protein, the triplex, an α2ß heterotrimer that coordinates neighboring capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regulate its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid protein (MCP) subunits. The model exploits the triplexes' departure from 3-fold symmetry to explain the highly skewed MCP hexamers, the triplex orientations at each 3-fold site, and the T=16 architecture. These observations also yielded new insights into maturation. IMPORTANCE: This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, macromolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procapsid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by cryo-electron microscopy suggests a hierarchical pathway in which multisubunit "protomers" are the building blocks of the procapsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral intervention.


Assuntos
Capsídeo/metabolismo , Simplexvirus/fisiologia , Montagem de Vírus , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Multimerização Proteica , Simplexvirus/ultraestrutura
16.
Med Hypotheses ; 81(1): 62-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23643704

RESUMO

A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.


Assuntos
Fusão Celular , Endocitose , Herpesviridae/fisiologia , MicroRNAs/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Humanos
17.
Virology ; 431(1-2): 71-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22695308

RESUMO

Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects on the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.


Assuntos
Capsídeo/metabolismo , Citosol/química , Herpesviridae/fisiologia , Proteínas Estruturais Virais/metabolismo , Internalização do Vírus , Eletroforese em Gel de Poliacrilamida , Herpesviridae/ultraestrutura , Microscopia Eletrônica , Oxirredução
18.
Curr Opin Virol ; 1(2): 142-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21927635

RESUMO

In all herpesviruses, the capsid is icosahedral in shape, composed of 162 capsomers, and assembled in the infected cell nucleus. Once a closed capsid has formed, it is packaged with the virus DNA and transported to the cytoplasm where further morphogenetic events take place. Herpesvirus capsid populations are highly uniform in shape, and this property has made them attractive for structural analysis particularly by cryo electron microscopy followed by three-dimensional image reconstruction. Here we describe what is known about herpesvirus capsid structure and assembly with emphasis on herpes simplex virus and on the contribution of structural studies. The overall analysis has demonstrated that herpesvirus capsids are formed by a pathway resembling that established for dsDNA bacteriophage such as P22 and HK97. For example herpes capsid assembly is found to: (1) involve a scaffolding protein not present in the mature virus; (2) proceed through a fragile, spherical procapsid intermediate; and (3) result in incorporation of a portal complex at a unique capsid vertex.


Assuntos
Capsídeo/química , Capsídeo/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Montagem de Vírus , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos
19.
Viruses ; 2(4): 995-1001, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21994666

RESUMO

Commentary on Ge, P.; Tsao, J.; Schein, S.; Green, T.J.; Luo, M.; Zhou, Z.H. Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science2010, 327, 689-693.

20.
J Mol Biol ; 397(2): 575-86, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20109467

RESUMO

The herpes simplex virus type 1 UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component (CCSC). Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid-binding domain of UL25 located on the surface of the mature DNA-containing capsid.


Assuntos
Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Capsídeo/química , Herpesvirus Humano 1/química , Dobramento de Proteína , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Microscopia Crioeletrônica , Mapeamento de Epitopos , Processamento de Imagem Assistida por Computador , Microscopia Imunoeletrônica , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA