Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33825439

RESUMO

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Assuntos
Neoplasias da Mama , Proteína rhoA de Ligação ao GTP , Proteína de Ligação a GTP rhoC , Transformação Celular Neoplásica , Feminino , Guanosina Trifosfato , Humanos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
2.
Haematologica ; 106(2): 404-411, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919089

RESUMO

Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Proteínas rac de Ligação ao GTP , Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Feminino , Mutação com Ganho de Função , Humanos , Recém-Nascido , Mutação , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Proteína RAC2 de Ligação ao GTP
3.
J Cell Sci ; 129(13): 2673-83, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27206857

RESUMO

Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A-H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape.


Assuntos
Cromatina/genética , Dano ao DNA/genética , Nucleossomos/genética , Animais , Camelídeos Americanos , Cromatina/isolamento & purificação , Histonas/metabolismo , Ubiquitinação/genética
4.
Genome Res ; 21(1): 12-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974897

RESUMO

Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity.


Assuntos
Replicação do DNA/fisiologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Genoma Mitocondrial , GTP Fosfo-Hidrolases/genética , Inativação Gênica , Genoma Humano , Células HeLa , Células Hep G2 , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
5.
Eur J Cell Biol ; 102(4): 151355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639782

RESUMO

Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.


Assuntos
Transdução de Sinais , Proteína rhoB de Ligação ao GTP , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/química , Proteína rhoB de Ligação ao GTP/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Semin Cell Dev Biol ; 21(6): 593-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20045077

RESUMO

Mitochondrial morphology varies according to cell type and cellular context from an interconnected filamentous network to isolated dots. This morphological plasticity depends on mitochondrial dynamics, a balance between antagonistic forces of fission and fusion. DRP1 and FIS1 control mitochondrial outer membrane fission and Mitofusins its fusion. This review focuses on OPA1, one of the few known actors of inner membrane dynamics, whose mutations provoke an optic neuropathy. Since its first identification in 2000 the characterization of the functions of OPA1 has made rapid progress thus providing numerous clues to unravel the pathogenetic mechanisms of ADOA-1.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , DNA Mitocondrial/metabolismo , Metabolismo Energético , GTP Fosfo-Hidrolases/genética , Humanos , Fusão de Membrana , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Mutação , Atrofia Óptica Autossômica Dominante/fisiopatologia
7.
Front Immunol ; 13: 980539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059552

RESUMO

Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.


Assuntos
Anticorpos de Domínio Único , Actinas/metabolismo , Guanosina Trifosfato , Transdução de Sinais , Anticorpos de Domínio Único/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
8.
STAR Protoc ; 2(1): 100249, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33437969

RESUMO

Here, we provide a protocol for the selection of conformation-specific intracellular antibody degraders using a cell-based screening method. We applied this protocol to select antibody-based degraders targeting the active form of the small GTPase RHOB (i.e., RHOB-GTP) using an engineered H2882 cell line. The protocol can be used to study the function of RHOB active conformation in various cellular settings. This protocol can be broadly applied to select any kind of intracellular antibody degraders, regardless of conformational state. For complete details on the use and execution of this protocol, please refer to Bery et al. (2019).


Assuntos
Engenharia Celular , Proteólise , Anticorpos de Cadeia Única/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos , Conformação Proteica , Anticorpos de Cadeia Única/genética , Proteína rhoB de Ligação ao GTP/genética
9.
J Virol ; 82(19): 9753-64, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18632867

RESUMO

Group A rotavirus is one of the most common causes of severe diarrhea in human infants and newborn animals. Rotavirus virions are triple-layered particles. The outer capsid proteins VP4 and VP7 are highly variable and represent the major neutralizing antigens. The inner capsid protein VP6 is conserved among group A rotaviruses, is highly immunogenic, and is the target antigen of most immunodiagnosis tests. Llama-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity and can therefore be expected to have properties different from conventional antibodies. In this study a library containing the VHH genes of a llama immunized with recombinant inner capsid protein VP6 was generated. Binders directed to VP6, in its native conformation within the viral particle, were selected and characterized. Four selected VHH directed to conformational epitopes of VP6 recognized all human and animal rotavirus strains tested and could be engineered for their use in immunodiagnostic tests for group A rotavirus detection. Three of the four VHH neutralized rotavirus in vivo independently of the strain serotype. Furthermore, this result was confirmed by in vivo partial protection against rotavirus challenge in a neonatal mouse model. The present study demonstrates for the first time a broad neutralization activity of VP6 specific VHH in vitro and in vivo. Neutralizing VHH directed to VP6 promise to become an essential tool for the prevention and treatment of rotavirus diarrhea.


Assuntos
Antígenos Virais/química , Proteínas do Capsídeo/química , Diarreia/prevenção & controle , Diarreia/virologia , Fragmentos de Imunoglobulinas/química , Animais , Animais Recém-Nascidos , Camelídeos Americanos , Capsídeo/química , Bovinos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Proteínas Recombinantes/química , Vacinas Virais
10.
MAbs ; 11(2): 305-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30466346

RESUMO

Synaptic vesicle fusion (exocytosis) is a precisely regulated process that entails the formation of SNARE complexes between the vesicle protein synaptobrevin 2 (VAMP2) and the plasma membrane proteins Syntaxin 1 and SNAP-25. The sub-cellular localization of the latter two molecules remains unclear, although they have been the subject of many recent investigations. To address this, we generated two novel camelid single domain antibodies (nanobodies) specifically binding to SNAP-25 and Syntaxin 1A. These probes penetrated more easily into samples and detected their targets more efficiently than conventional antibodies in crowded regions. When investigated by super-resolution imaging, the nanobodies revealed substantial extra-synaptic populations for both SNAP-25 and Syntaxin 1A, which were poorly detected by antibodies. Moreover, extra-synaptic Syntaxin 1A molecules were recruited to synapses during stimulation, suggesting that these are physiologically-active molecules. We conclude that nanobodies are able to reveal qualitatively and quantitatively different organization patterns, when compared to conventional antibodies.


Assuntos
Neurônios/metabolismo , Anticorpos de Domínio Único , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/análise , Sintaxina 1/análise , Animais , Hipocampo/metabolismo , Humanos , Ratos , Ratos Wistar
11.
Antibodies (Basel) ; 8(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31544814

RESUMO

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

12.
Cell Chem Biol ; 26(11): 1544-1558.e6, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31522999

RESUMO

The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.


Assuntos
Anticorpos de Domínio Único/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Sítios de Ligação , Movimento Celular/efeitos dos fármacos , Cristalografia por Raios X , Doxiciclina/farmacologia , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Expressão Gênica/efeitos dos fármacos , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Mutagênese , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Proteína rhoB de Ligação ao GTP/antagonistas & inibidores , Proteína rhoB de Ligação ao GTP/genética
13.
Biochim Biophys Acta ; 1763(5-6): 500-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16737747

RESUMO

The mitochondria are dynamic organelles that constantly fuse and divide. An equilibrium between fusion and fission controls the morphology of the mitochondria, which appear as dots or elongated tubules depending the prevailing force. Characterization of the components of the fission and fusion machineries has progressed considerably, and the emerging question now is what role mitochondrial dynamics play in mitochondrial and cellular functions. Its importance has been highlighted by the discovery that two human diseases are caused by mutations in the two mitochondrial pro-fusion genes, MFN2 and OPA1. This review will focus on data concerning the function of OPA1, mutations in which cause optic atrophy, with respect to the underlying pathophysiological processes.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Atrofia Óptica Autossômica Dominante/patologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Mutação/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo
14.
BMC Biotechnol ; 7: 7, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17257422

RESUMO

BACKGROUND: Recombinant antibodies from Camelidae (VHHs) are potentially useful tools for both basic research and biotechnological applications because of their small size, robustness, easy handling and possibility to refold after chemio-physical denaturation. Their heat tolerance is a particularly interesting feature because it has been recently related to both high yields during recombinant expression and selective purification of folded protein. RESULTS: Purification of recombinant RE3 VHH by heat treatment yielded the same amount of antibody as purification by affinity chromatography and negligible differences were found in stability, secondary structure and functionality. Similar results were obtained using another class of thermotolerant proteins, the single domain VH scaffold, described by Jespers et al. However, thermosensitive VHs could not withstand the heat treatment and co-precipitated with the bacterial proteins. In both cases, the thermotolerant proteins unfolded during the treatment but promptly refolded when moved back to a compatible temperature. CONCLUSION: Heat treatment can simplify the purification protocol of thermotolerant proteins as well as remove any soluble aggregate. Since the re-folding capability after heat-induced denaturation was previously correlated to higher performance during recombinant expression, a unique heating step can be envisaged to screen constructs that can provide high yields of correctly-folded proteins.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Fracionamento Químico/métodos , Temperatura Alta , Engenharia de Proteínas/métodos , Animais , Camelídeos Americanos , Dobramento de Proteína , Estrutura Terciária de Proteína
15.
Elife ; 52016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27434673

RESUMO

In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications.


Assuntos
Anticorpos Monoclonais Humanizados , Biologia Molecular/métodos , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Animais , Camelídeos Americanos , Humanos
16.
Invest Ophthalmol Vis Sci ; 46(11): 4288-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249510

RESUMO

PURPOSE: Mutations in the mitochondrial dynamin-related GTPase OPA1 cause autosomal dominant optic atrophy (ADOA), but the pathophysiology of this disease is unknown. As a first step in functional studies, this study was conducted to evaluate the expression of Opa1 in whole retina and in isolated retinal ganglion cells (RGCs) and to test the effects of Opa1 downregulation in cultured RGCs. METHODS: Opa1 mRNA isoforms from total retina and from RGCs freshly isolated by immunopanning were determined by RT-PCR. Protein expression was examined by immunohistochemistry and Western blot with antibodies against Opa1 and cytochrome c, and the mitochondrial network was visualized with a mitochondrial marker. Short interfering (si)RNA targeting OPA1 mRNAs were transfected to cultured RGCs and mitochondrial network phenotypes were followed for 15 days, in comparison with those of cerebellar granule cells (CGCs). RESULTS: Opa1 expression did not predominate in rat postnatal RGCs as found by immunohistochemistry and Western blot analysis. The pattern of mRNA isoforms was similar in whole retina and RGCs. After a few days in culture, isolated RGCs showed fine mitochondrial punctiform structures in the soma and neurites that colocalized with cytochrome c and Opa1. Opa1 knockdown in RGCs induced mitochondrial network aggregation at a higher rate than in CGCs. CONCLUSIONS: Results suggest that the level of expression and the mRNA isoforms do not underlie the vulnerability of RGCs to OPA1 mutations. However, aggregation of the mitochondrial network induced by the downregulation of Opa1 appears more frequent in RGCs than in control CGCs.


Assuntos
GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Western Blotting , Células Cultivadas , Regulação para Baixo , GTP Fosfo-Hidrolases/metabolismo , Inativação Gênica/fisiologia , Imuno-Histoquímica , Isoenzimas/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Doenças Retinianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
17.
FEBS Lett ; 523(1-3): 171-6, 2002 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12123827

RESUMO

Mutations in the OPA1 gene are associated with autosomal dominant optic atrophy. OPA1 encodes a dynamin-related protein orthologous to Msp1 of Schizosaccharomyces pombe and Mgm1p of Saccharomyces cerevisiae, both involved in mitochondrial morphology and genome maintenance. We present immuno-fluorescence and biochemical evidences showing that OPA1 resides in the mitochondria where it is imported through its highly basic amino-terminal extension. Proteolysis experiments indicate that OPA1 is present in the inter-membrane space and electron microscopy further localizes it close to the cristae. The strong association of OPA1 with membranes suggests its anchoring to the inner membrane.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Membranas Intracelulares/enzimologia , Mitocôndrias/enzimologia , Células 3T3 , Animais , Dinaminas , Imunofluorescência , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Ratos
18.
PLoS One ; 9(11): e111034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365345

RESUMO

Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB. Using phage display affinity maturation against the GTP-locked mutant RhoAL63, we isolated scFvs against RhoA active conformation that display Kd values at the nanomolar range, which corresponded to an increase of affinity of three orders of magnitude compared to scFvC1. Although a majority of these evolved scFvs remained selective towards the active conformation of RhoA, RhoB and RhoC, we identified some scFvs that bind to RhoA and RhoC but not to RhoB activated form. Alternatively, we performed a substractive panning towards RhoB, and isolated the scFvE3 exhibiting a 10 times higher affinity for RhoB than RhoA activated forms. We showed the peculiar ability of scFvE3 to detect RhoB but not RhoA GTP-bound form in cell extracts overexpressing Guanine nucleotide Exchange Factor XPLN as well as in EGF stimulated HeLa cells. Our results demonstrated the ability of scFvs to distinguish RhoB from RhoA GTP-bound form and provide new selective tools to analyze the cell biology of RhoB GTPase regulation.


Assuntos
Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Proteína rhoB de Ligação ao GTP/química , Proteína rhoB de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Técnicas de Visualização da Superfície Celular , Ativação Enzimática , Biblioteca Gênica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica/imunologia , Conformação Proteica , Alinhamento de Sequência , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Proteína rhoB de Ligação ao GTP/imunologia
19.
Methods Mol Biol ; 911: 65-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22886246

RESUMO

The preparation of antibody libraries starting from lymphocytes recovered from immunized members of the Camelidae enables to collect binders that underwent somatic maturation. However, the time and costs necessary to prepare a library for each new antigen may urge to look for alternatives such as those offered by large one-pot libraries. Here we describe how to obtain a suitable naïve library using material from nonimmunized llamas. Despite the lack of somatic maturation, the selection based on phage display allowed to isolate from such naïve libraries VHHs with affinity in the subnanomolar range and suitable for the standard immunoapplications.


Assuntos
Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Técnicas de Visualização da Superfície Celular , Biblioteca Gênica , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Animais , Separação Celular/métodos , DNA Complementar , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Linfócitos/citologia , Linfócitos/metabolismo , Reação em Cadeia da Polimerase , RNA/isolamento & purificação , Transformação Bacteriana
20.
Dev Comp Immunol ; 36(1): 150-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21767565

RESUMO

Independent variable domains with VH hallmarks have been repeatedly identified in immune and pre-immune VHH libraries. In some cases, stable independent VH domains have been also isolated in mouse and human recombinant antibody repertoires. However, we have come to realize that VHs were selected with a higher efficiency than VHHs during biopanning of a pre-immune (VHH) library. The biochemical and biophysical comparison did not indicate a presence of any feature that would favor the VH binders during the selection process. In contrast, selected VHHs seemed to be more stable than the VHs, ruling out the existence of a thermodynamically - favored VH sub-class. Therefore, we reasoned that a certain degree of thermodynamic instability may be beneficial for both displaying and expression of VH(H)s when the Sec-pathway is used for their secretion to avoid the cytoplasmic trapping of fast-folding polypeptides. Indeed, VHHs, but not VHs, were accumulated at higher concentrations when expressed fused to the dsbA leader peptide, a sequence that drives the linked polypeptides to the co-translational SRP secretion machinery. These data suggest that the thermodynamically favored VHHs can be lost during biopanning, as previously observed for DARPins and in contrast to the recombinant antibodies in scFv format.


Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas/metabolismo , Anticorpos de Cadeia Única/metabolismo , Animais , Biblioteca Genômica , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Ligação Proteica/imunologia , Engenharia de Proteínas , Estabilidade Proteica , Via Secretória/genética , Via Secretória/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA