Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4286-4308, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785529

RESUMO

Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.

2.
Mol Biol Rep ; 50(6): 5125-5135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118382

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. METHODS AND RESULTS: In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton's jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. CONCLUSIONS: Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.


Assuntos
Técnicas de Cultura de Células , Condrócitos , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Colágeno Tipo II , Humanos , Cordão Umbilical/citologia , Polpa Dentária/citologia , Condrócitos/citologia , Condrócitos/metabolismo , Osteoartrite/terapia , Cultura Primária de Células/métodos , Metaloproteinases da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
3.
J Viral Hepat ; 29(11): 948-957, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35789515

RESUMO

HBV RNA is considered as a promising predictor in patients who discontinue nucleos(t)ide analogues (NAs). We determined HBV RNA levels in non-cirrhotic HBeAg-negative patients who discontinued NAs and assessed their predictability for 12-month outcomes. Fifty-seven patients of DARING-B study were included. HBV RNA levels were determined in stored monthly serum samples drawn at 0-3 months after end of therapy (EOT). Other markers previously determined in the same cohort including hepatitis B core-related antigen (HBcrAg) were also assessed. HBV RNA at EOT was detectable in 7% of patients, who developed virological/clinical relapse and required retreatment at month 2; in patients with undetectable EOT HBV RNA, 12-month cumulative rates of virological relapse, clinical relapse and retreatment were 68%, 28% and 21%, respectively (p ≤ 0.008). HBV RNA at month-1 after EOT was detectable in 19% of patients being associated with higher probability only of virological relapse (p = 0.001). HBV RNA levels correlated significantly to HBV DNA, HBcrAg, ALT and interferon-induced protein-10, but not HBsAg levels. Combined EOT HBV RNA and HBcrAg detection and/or HBsAg >1000 IU/ml was associated only with higher probability of retreatment having higher sensitivity and lower specificity than HBV RNA alone. In conclusion, serum HBV RNA is detectable in a minority of non-cirrhotic HBeAg-negative patients under effective long-term NAs therapy offering low sensitivity but 100% specificity for early retreatment due to severe clinical relapses after NA discontinuation. The combinations of EOT HBV RNA with HBcrAg and/or high HBsAg levels increase sensitivity but decrease specificity for prediction of retreatment after NAs withdrawal.


Assuntos
Hepatite B Crônica , Antivirais/uso terapêutico , DNA Viral , Antígenos do Núcleo do Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Humanos , Interferons/uso terapêutico , RNA , Recidiva
4.
Lasers Med Sci ; 32(1): 201-210, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785631

RESUMO

This study aimed to investigate the potential of low-level laser irradiation (LLLI) to promote odontogenic differentiation and biomineralization by dental pulp stem cells (DPSCs) seeded inside bioceramic scaffolds. Mg-based, Zn-doped bioceramic scaffolds, synthesized by the sol-gel technique, were spotted with DPSCs and exposed to LLLI at 660 nm with maximum output power of 140 mw at fluencies (a) 2 and 4 J/cm2 to evaluate cell viability/proliferation by the MTT assay and (b) 4 J/cm2 to evaluate cell differentiation, using real-time PCR (expression of odontogenic markers) and a p-nitrophenylphosphate (pNPP)-based assay for alkaline phosphatase (ALP) activity measurement. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were used for structural/chemical characterization of the regenerated tissues. Exposure of the DPSCs/scaffold complexes to the proposed LLLI scheme was associated with statistically significant increase of odontogenesis-related markers (bone morphogenetic protein 2 (BMP-2): 22.4-fold, dentin sialophosphoprotein (DSPP): 28.4-fold, Osterix: 18.5-fold, and Runt-related transcription factor 2 (Runx2): 3.4-fold). ALP activity was significantly increased at 3 and 7 days inside the irradiated compared to that in the non-irradiated SC/DPSC complexes, but gradually decreased until 14 days. Newly formed Ca-P tissue was formed on the SC/DPSC complexes after 28 days of culture that attained the characteristics of bioapatite. Overall, LLLI treatment proved to be beneficial for odontogenic differentiation and biomineralization of DPSCs inside the bioceramic scaffolds, making this therapeutic modality promising for targeted dentin engineering.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Terapia com Luz de Baixa Intensidade , Magnésio/farmacologia , Odontogênese/efeitos dos fármacos , Células-Tronco/citologia , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerâmica/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/ultraestrutura
5.
Stem Cell Rev Rep ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967770

RESUMO

INTRODUCTION: Stem cells from various sources including major salivary glands have been used to establish pancreatic differentiation in an attempt to provide new treatment options for patients with diabetes mellitus. In contrast, the potential of using the more easily accessible intraoral minor salivary glands has not been evaluated so far. MATERIALS AND METHODS: Salivary stem cells were isolated from normal labial minor salivary glands that were removed during the excision of a mucocele and were attempted to differentiate into pancreatic cell lines using a culture medium enriched with activin A, retinoic acid and GLP-1.Real time RT-PCR was used to evaluate the expression of the genes of pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx. Complementary, 22 labial minor salivary gland paraffin-embedded specimens were examined using immunohistochemistry for the presence of the relevant gene products of the pancreatic transcription factors Arx, MafA, Ptf1a and Pdx1. RESULTS: The differentiated salivary stem cells(cells of passage 3) expressed the genes of the pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx even on the first day of the experiment while immunohistochemistry also confirmed the presence of the protein products of Arx, MafA, Ptf1a as well as Pdx1[> 50% of the specimens for Arx(5/8) and MafA(7/8), < 50% for Ptf1a(5/11) and Pdx1(5/11)] in ducts, mesenchymal connective tissue and acinar cells. CONCLUSIONS: Labial minor salivary glands may share gene and protein characteristics with pancreas suggesting a possible usefulness for pancreatic regeneration or substitution in cases of deficiency.

6.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38457263

RESUMO

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Assuntos
Ligas , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Gengiva , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Tiazóis , Titânio , Humanos , Fibroblastos/efeitos dos fármacos , Titânio/toxicidade , Titânio/química , Gengiva/citologia , Gengiva/efeitos dos fármacos , Prata/química , Prata/toxicidade , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ligas/toxicidade , Teste de Materiais , Ligas Dentárias/química , Ligas Dentárias/toxicidade , Microscopia Eletrônica de Varredura , Corantes , Materiais Biocompatíveis/química , Sais de Tetrazólio
7.
Infect Genet Evol ; 121: 105597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663466

RESUMO

BACKGROUND: New diagnoses of HIV-1 infection among people who inject drugs (PWID) in Athens, Greece, saw a significant increase in 2011 and a subsequent decline after 2013. Despite this, ongoing HIV-1 transmission persisted from 2014 to 2020 within this population. Our objective was to estimate the time of infection for PWID in Athens following the HIV-1 outbreak, explore the patterns of HIV-1 dispersal over time, and determine the duration from infection to diagnosis. METHODS: Time from HIV-1 infection to diagnosis was estimated for 844 individuals infected within 4 PWID-specific clusters and for 8 PWID infected with sub-subtype A6 diagnosed during 2010-2019. Phylogeny reconstruction was performed using the maximum-likelihood method. HIV-1 infection dates were based on molecular clock calculations. RESULTS: In total 86 of 92 (93.5%) sequences from PWID diagnosed during 2016-2019 were either related to the previously identified PWID-specific clusters (n = 81) or belonged to a new A6 cluster (n = 5). The median time between infection and diagnosis was 0.42 years during the outbreak period and 0.70 years during 2016-2019 (p < 0.001). The proportion of clustered sequences from PWID was very low at 5.3% during the pre-outbreak period (1998-2009), saw an increase to 41.7% one year before the outbreak in 2010, and consistently remained high during the whole period after 2011, spanning the post-outbreak period (2016-2019) with a range from 92.9% to 100%. CONCLUSIONS: The substantial proportion of clustered infections (93.5%) during 2016-2019 implies a persistent 'slow burn' HIV outbreak among PWID in Athens, suggesting that the outbreak was not successfully eliminated. The consistently high proportion of clustered sequences since the onset of the outbreak suggests the persistence of ongoing HIV-1 transmission attributed to injection practices. Our findings underscore the importance of targeted interventions among PWID, considering the ongoing transmission rate and prolonged time from infection to diagnosis.


Assuntos
Surtos de Doenças , Infecções por HIV , HIV-1 , Epidemiologia Molecular , Filogenia , Abuso de Substâncias por Via Intravenosa , Humanos , Grécia/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Abuso de Substâncias por Via Intravenosa/epidemiologia , Abuso de Substâncias por Via Intravenosa/complicações , HIV-1/genética , Masculino , Feminino , Adulto
8.
Biomedicines ; 11(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371681

RESUMO

SARS-CoV-2 ORF3a accessory protein was found to be involved in virus release, immunomodulation and exhibited a pro-apoptotic character. In order to unravel a potential ORF3a-induced apoptotic and inflammatory death mechanism, lung epithelial cells (A549) were transfected with in vitro synthesized ORF3a mRNA. The protein's dynamic involvement as "stress factor" for the endoplasmic reticulum, causing the activation of PERK kinase and other UPR-involved proteins and therefore the upregulation of their signaling pathway executioners (ATF6, XBP-1s, PERK, phospho eIF2a, ATF4, CHOP, GADD34), has been clearly demonstrated. Furthermore, the overexpression of BAX and BH3-only pro-apoptotic protein PUMA, the upregulation of Bcl-2 family genes (BAX, BAK, BID, BAD), the reduced expression of Bcl-2 in mRNA and protein levels, and lastly, the cleavage of PARP-1 and caspase family members (caspase-3,-8 and -9) indicate that ORF3a displays its apoptotic character through the mitochondrial pathway of apoptosis. Moreover, the upregulation of NFκB, phosphorylation of p65 and IκΒα and the elevated expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-18) in transfected cells with ORF3a mRNA indicate that this protein causes the inflammatory response through NFκB activation and therefore triggers lung injury. An intriguing finding of our study is that upon treatment of the ORF3a-transfected cells with GSK2606414, a selective PERK inhibitor, both complications (apoptosis and inflammatory response) were neutralized, and cell survival was favored, whereas treatment of transfected cells with z-VAD (a pan-caspase inhibitor) despite inhibiting cell death, could not ameliorate the inflammatory response of transfected A549 cells. Given the above, we point out that PERK kinase is a "master tactician" and its activation constitutes the main stimulus for the emergence of ORF3a apoptotic and inflammatory nature and therefore could serve as potential target for developing novel therapeutic approaches against COVID-19.

9.
Biomedicines ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37509529

RESUMO

The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue's low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, and investigation of a safe, "smart", fibrous scaffold containing a genetically incorporated active peptide for chondrogenic induction. While possessing specific sequences and the respective mechanical properties from natural fibrous proteins, the fibers also incorporate a Transforming Growth Factor-ß1 (TGF-ß1)-derived peptide (YYVGRKPK) that can promote chondrogenesis. The scaffold formed stable porous networks with shear-thinning properties at 37 °C, as shown by SEM imaging and rheological characterization, and were proven to be non-toxic to human dental pulp stem cells (hDPSCs). Its chondrogenic capacity was evidenced by a strong increase in the expression of specific chondrogenesis gene markers SOX9, COL2, ACAN, TGFBR1A, and TGFBR2 in cells cultured on "scaffold-TGFß1" for 21 days and by increased phosphorylation of intracellular signaling proteins Smad-2 and Erk-1/2. Additionally, intense staining of glycosaminoglycans was observed in these cells. According to our results, "scaffold-TGFß1" is proposed for clinical studies as a safe, injectable treatment for cartilage degeneration.

10.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049329

RESUMO

This work describes the design, preparation, and deep investigation of "intelligent nanobiomaterials" that fulfill the safety rules and aim to serve as "signal deliverers" for osteogenesis, harboring a specific peptide that promotes and enhances osteogenesis at the end of their hydrogel fibers. The de novo synthesized protein fibers, besides their mechanical properties owed to their protein constituents from elastin, silk fibroin and mussel-foot adhesive protein-1 as well as to cell-attachment peptides from extracellular matrix glycoproteins, incorporate the Bone Morphogenetic Protein-2 (BMP2) peptide (AISMLYLDEN) that, according to our studies, serves as "signal deliverer" for osteogenesis. The osteogenetic capacity of the biomaterial has been evidenced by investigating the osteogenic marker genes ALP, RUNX2, Osteocalcin, COL1A1, BMPR1A, and BMPR2, which were increased drastically in cells cultured on scaffold-BMP2 for 21 days, even in the absence of osteogenesis medium. In addition, the induction of phosphorylation of intracellular Smad-1/5 and Erk-1/2 proteins clearly supported the osteogenetic capacity of the biomaterial.

11.
Stem Cell Rev Rep ; 19(8): 2957-2979, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751010

RESUMO

The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.


Assuntos
Osteoartrite , Proteômica , Ratos , Humanos , Camundongos , Animais , Cromatografia Líquida , Secretoma , Espectrometria de Massas em Tandem , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Osteoartrite/terapia , Osteoartrite/genética , Células-Tronco/metabolismo
12.
Biomedicines ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137403

RESUMO

Τransforming growth factor ß1 (TGF-ß1) comprises a key regulator protein in many cellular processes, including in vivo chondrogenesis. The treatment of human dental pulp stem cells, separately, with Leu83-Ser112 (C-terminal domain of TGF-ß1), as well as two very short peptides, namely, 90-YYVGRKPK-97 (peptide 8) and 91-YVGRKP-96 (peptide 6) remarkably enhanced the chondrogenic differentiation capacity in comparison to their full-length mature TGF-ß1 counterpart either in monolayer cultures or 3D scaffolds. In 3D scaffolds, the reduction of the elastic modulus and viscous modulus verified the production of different amounts and types of ECM components. Molecular dynamics simulations suggested a mode of the peptides' binding to the receptor complex TßRII-ALK5 and provided a possible structural explanation for their role in inducing chondrogenesis, along with endogenous TGF-ß1. Further experiments clearly verified the aforementioned hypothesis, indicating the signal transduction pathway and the involvement of TßRII-ALK5 receptor complex. Real-time PCR experiments and Western blot analysis showed that peptides favor the ERK1/2 and Smad2 pathways, leading to an articular, extracellular matrix formation, while TGF-ß1 also favors the Smad1/5/8 pathway which leads to the expression of the metalloproteinases ADAMTS-5 and MMP13 and, therefore, to a hypertrophic chondrocyte phenotype. Taken together, the two short peptides, and, mainly, peptide 8, could be delivered with a scaffold to induce in vivo chondrogenesis in damaged articular cartilage, constituting, thus, an alternative therapeutic approach for osteoarthritis.

13.
Front Med (Lausanne) ; 9: 1025147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698808

RESUMO

The emergence of SARS-CoV-2 has pinpointed the importance of non-pharmaceutical interventions (NPIs), which have been traditionally used for the prevention of the spread of respiratory viruses among individuals. The aim of our study was to capture the level of circulation of respiratory syncytial and influenza viruses during a period of medium severity NPIs due to SARS-CoV-2 pandemics in Greece. A total of 2,225 nasopharyngeal samples were received during the year 2021 as a part of the routine diagnostic service and were divided into two study groups: (a) January to September 2021 and (b) October to the end of December 2021. The latter is the time of the year when there is a peak of infections from most respiratory viruses, and thus, most of the samples were tested in that period. The samples were taken from three different sites, i.e., (a) industrial workers in a factory, (b) elderly homecare facilities, and c) people who actively asked to be tested for SARS-CoV-2. All the samples were tested simultaneously for SARS-CoV2, RSV, and influenza virus. A total of 2,110 samples were negative for either of the three viruses, 106 were SARS-CoV-2-positive, and 9 were RSV-positive from which 7 were found in the workers' group. None of the samples was found to be positive for the influenza virus, and no sample had co-infection. Our study shows the low-level circulation of RSV and influenza viruses during autumn-winter 2021 and will provide a reference for future studies of RSV and influenza in Greece.

14.
J Inorg Biochem ; 228: 111695, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007963

RESUMO

A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(µ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(µ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 µM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 µΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.


Assuntos
Anti-Infecciosos/farmacologia , Complexos de Coordenação/química , Prata/química , Tioamidas/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , DNA Girase/metabolismo , Células HeLa , Humanos , Ligantes , Células MCF-7 , Testes de Sensibilidade Microbiana/métodos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Fosfinas/química , Prata/farmacologia , Tioamidas/farmacologia , Xantenos/química
15.
Vaccines (Basel) ; 9(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452015

RESUMO

Administration of mRNA against SARS-CoV-2 has demonstrated sufficient efficacy, tolerability and clinical potential to disrupt the vaccination field. A multiple-arm, cohort randomized, mixed blind, placebo-controlled study was designed to investigate the in vivo expression of mRNA antibodies to immunosuppressed murine models to conduct efficacy, safety and bioavailability evaluation. Enabling 4.0 tools we reduced animal sacrifice, while interventions were designed compliant to HARRP and SPIRIT engagement: (a) Randomization, blinding; (b) pharmaceutical grade formulation, monitoring; (c) biochemical and histological analysis; and (d) theoretic, statistical analysis. Risk assessment molded the study orientations, according to the ARRIVE guidelines. The primary target of this protocol is the validation of the research hypothesis that autologous translation of Trastuzumab by in vitro transcribed mRNA-encoded antibodies to immunosuppressed animal models, is non-inferior to classical treatments. The secondary target is the comparative pharmacokinetic assessment of the novel scheme, between immunodeficient and healthy subjects. Herein, the debut clinical protocol, investigating the pharmacokinetic/pharmacodynamic impact of mRNA vaccination to immunodeficient organisms. Our design, contributes novel methodology to guide the preclinical development of RNA antibody modalities by resolving efficacy, tolerability and dose regime adjustment for special populations that are incapable of humoral defense.

16.
Bone Rep ; 15: 101125, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632002

RESUMO

Zinc Finger Protein 217 (ZNF217), a transcription factor and oncogene product, has been found to dysregulate Bone Morphogenetic Protein (BMP) signaling and induce invasion in breast tumors. In this study, the effect of BMP-2 or an active BMP-2 peptide, AISMLYLDEN, on the expression of ZNF217, BMP4 and CDK-inhibitor p21 gene, CDKN1A, was investigated in MCF-7 breast cancer cells. In parallel, the entire protein (BMP-2) as well as the aforementioned peptide were investigated in hDPSCs during osteogenic differentiation. The treatment of MCF-7 cancer cells with different concentrations of peptide AISMLYLDEN showed that the addition of 22.6 ng/ml was more effective in comparison to the other used concentrations. In particular, 48 h after treatment, CDKN1A and BMP4 mRNA levels were substantially increased in contrast to ZNF217 mRNA levels which were decreased. These results are strongly supported by BrdU assay that clearly indicated inhibition of cancer cell proliferation. Taken together, these results open ways for a concurrent use, at appropriate concentrations, of the peptide AISMLYLDEN during conventional therapeutic treatment in breast tumors with a metastatic tendency to the bones. Regarding the effect of the entire protein as well as its peptide on hDPSCs differentiation into osteocytes, the mRNA levels of osteocalcin, an osteogenic marker, showed that the peptide enhanced osteogenesis at a higher degree in comparison to the entire BMP-2 without however altering ZNF217, CDKN1A and BMP4 expression levels, which remained as expected of non-cancer cells.

17.
Biomed Res Int ; 2021: 5013065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938808

RESUMO

Osteosarcoma is considered to be a highly malignant tumor affecting primarily long bones. It metastasizes widely, primarily to the lungs, resulting in poor survival rates of between 19 and 30%. Standard treatment consists of surgical removal of the affected site, with neoadjuvant and adjuvant chemotherapy commonly used, with the usual side effects and complications. There is a need for new treatments in this area, and silver nanoparticles (AgNPs) are one potential avenue for exploration. AgNPs have been found to possess antitumor and cytotoxic activity in vitro, by demonstrating decreased viability of cancer cells through cell cycle arrest and subsequent apoptosis. Integral to these pathways is tumor protein p53, a tumor suppressor which plays a critical role in maintaining genome stability by regulating cell division, after DNA damage. The purpose of this study was to determine if p53 mediates any difference in the response of the osteosarcoma cells in vitro when different sizes and concentrations of AgNPs are administered. Two cell lines were studied: p53-expressing HOS cells and p53-deficient Saos-2 cells. The results of this study suggest that the presence of protein p53 significantly affects the efficacy of AgNPs on osteosarcoma cells.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Nanopartículas Metálicas/administração & dosagem , Osteossarcoma/tratamento farmacológico , Prata/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Dano ao DNA/efeitos dos fármacos , Humanos , Osteossarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
18.
Dent Mater ; 37(5): 914-927, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33691992

RESUMO

OBJECTIVES: A three-dimensional (3D) dentin/pulp tissue analogue, resembling the human natural tissue has been engineered in an in vitro setup, aiming to assess the cytocompatibility of resin-based dental restorative cements. METHODS: Stem Cells from Apical Papilla (SCAP) and Human Umbilical Vein Endothelial Cells (HUVEC) were embedded in Collagen-I/Fibrin hydrogels at 1:3 ratio within 24-well plates. Hanging culture inserts were placed over the hydrogels, housing an odontoblast-like cell layer and a human treated-dentin barrier. Shear modulus of the hydrogels at 3.5 and 5 mg/ml was evaluated by dynamic mechanical analysis. Eluates of two resin-based cements, a dual-cure- (Breeze™, Pentron: Cement-1/C1), and a self-adhesive cement (SpeedCEMplus™, Ivoclar-Vivadent: Cement-2/C2) were applied into the dentin/pulp tissue analogue after pre-stimulation with LPS. Cytocompatibility was assessed by MTT assay, live/dead staining and real-time PCR analysis. RESULTS: Both hydrogel concentrations showed similar shear moduli to the natural pulp until day (D) 7, while the 5 mg/ml-hydrogel substantially increased stiffness by D14. Both cements caused no significant toxicity to the dentin/pulp tissue analogue. C1 induced stimulation (p < 0.01) of cell viability (158 ± 3%, 72 h), while pre-stimulation with LPS attenuated this effect. C2 (±LPS) caused minor reduction of viability (15-20%, 24 h) that recovered at 72 h for the LPS+ group. Both cements caused upregulation of VEGF, ANGP-1, and downregulation of the respective receptors VEGFR-2 and Tie-1. SIGNIFICANCE: Both resin-based cements showed good cytocompatibility and triggered angiogenic response within the dentin/pulp tissue analogue, indicating initiation of pulp repair responses to the released xenobiotics.


Assuntos
Colagem Dentária , Dentina , Cimentos Dentários , Células Endoteliais , Humanos , Odontoblastos , Cimentos de Resina/toxicidade , Células-Tronco , Engenharia Tecidual
19.
ACS Biomater Sci Eng ; 7(11): 5064-5077, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34666482

RESUMO

Elastin-like polypeptides (ELPs) are protein-based biopolymers genetically produced from polypeptides composed of a repeating pentapeptide sequence V-P-G-X-G. The inherent properties of recombinant ELPs, such as smart nature, controlled sequence complexity, physicochemical properties, and biocompatibility, make these polymers suitable for use in nanobiotechnological applications, as biofunctionalized scaffolds for tissue-engineering purposes and drug delivery. In this work, we report the design and synthesis of two elastomeric self-assembling polypeptides (ELPs) that mimic the endogenous human tropoelastin. Using molecular biology techniques, two artificial genes that encode two ELP concatemers of approximate molecular mass 60 kDa, one of them carrying biotin-binding peptide motifs, were constructed. These motifs could facilitate biofunctionalization of the ELPs through tethering biotinylated factors, such as growth factors. The ELPs were heterologously overexpressed in E. coli and subsequently purified in two steps: a nonchromatographic technique by organic solvent extraction, followed by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The characterization of the biochemical properties and biocompatibility of ELPs was also performed in this study. The ELP carrying the biotin-binding motifs was tested for its capability to bind biotin, and indeed, it was observed that it can bind biotinylated proteins specifically. Additionally, results concerning the cytotoxicity of the ELPs exhibited excellent compatibility of the ELPs with mammalian cells in vitro. We anticipate that these ELPs can be used as components of a scaffold that mimics the extracellular matrix (ECM) for the regeneration of endogenously highly elastic tissues.


Assuntos
Elastina , Escherichia coli , Animais , Biopolímeros , Sistemas de Liberação de Medicamentos , Elastina/genética , Escherichia coli/genética , Humanos , Peptídeos/genética
20.
Dent Mater ; 37(1): e23-e36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208264

RESUMO

OBJECTIVE: Hybrid chitosan/gelatin/nanohydroxyapatite (CS/Gel/nHA) scaffolds have attracted considerable interest in tissue engineering (TE) of mineralized tissues. The present study aimed to investigate the potential of CS/Gel/nHA scaffolds loaded with dental pulp stem cells (DPSCs) to induce odontogenic differentiation and in vitro biomineralization. METHODS: CS/Gel/nHA scaffolds were synthesized by freeze-drying, seeded with DPSCs, and characterized with flow cytometry. Scanning Electron Microscopy (SEM), live/dead staining, and MTT assays were used to evaluate cell morphology and viability; real-time PCR for odontogenesis-related gene expression analysis; SEM-EDS (Energy Dispersive X-ray spectroscopy), and X-ray Diffraction analysis (XRD) for structural and chemical characterization of the mineralized constructs, respectively. RESULTS: CS/Gel/nHA scaffolds supported viability and proliferation of DPSCs over 14 days in culture. Gene expression patterns indicated pronounced odontogenic shift of DPSCs, evidenced by upregulation of DSPP, BMP-2, ALP, and the transcription factors RunX2 and Osterix. SEM-EDS showed the production of a nanocrystalline mineralized matrix inside the cell-based and - to a lesser extent - the cell-free constructs, with a time-dependent production of net-like nanocrystals (appr. 25-30nm in diameter). XRD analysis gave the crystallite size (D=50nm) but could not distinguish between the initially incorporated and the biologically produced nHA. SIGNIFICANCE: This is the first study validating the potential of CS/Gel/nHA scaffolds to support viability and proliferation of DPSCs, and to provide a biomimetic microenvironment favoring odontogenic differentiation and in vitro biomineralization without the addition of any inductive factors, including dexamethasone and/or growth/morphogenetic factors. These results reveal a promising strategy towards TE of mineralized dental tissues.


Assuntos
Quitosana , Gelatina , Biomineralização , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária , Odontogênese , Células-Tronco , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA