Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(3): 722-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733683

RESUMO

Necrotizing fasciitis (NF) caused by flesh-eating bacteria is associated with high case fatality. In an earlier study, we reported infection of an immunocompetent individual with multiple strains of Aeromonas hydrophila (NF1-NF4), the latter three constituted a clonal group whereas NF1 was phylogenetically distinct. To understand the complex interactions of these strains in NF pathophysiology, a mouse model was used, whereby either single or mixed A. hydrophila strains were injected intramuscularly. NF2, which harbors exotoxin A (exoA) gene, was highly virulent when injected alone, but its virulence was attenuated in the presence of NF1 (exoA-minus). NF1 alone, although not lethal to animals, became highly virulent when combined with NF2, its virulence augmented by cis-exoA expression when injected alone in mice. Based on metagenomics and microbiological analyses, it was found that, in mixed infection, NF1 selectively disseminated to mouse peripheral organs, whereas the other strains (NF2, NF3, and NF4) were confined to the injection site and eventually cleared. In vitro studies showed NF2 to be more effectively phagocytized and killed by macrophages than NF1. NF1 inhibited growth of NF2 on solid media, but ExoA of NF2 augmented virulence of NF1 and the presence of NF1 facilitated clearance of NF2 from animals either by enhanced priming of host immune system or direct killing via a contact-dependent mechanism.


Assuntos
Aeromonas hydrophila/patogenicidade , Coinfecção/microbiologia , Fasciite Necrosante/microbiologia , Aeromonas hydrophila/genética , Aeromonas hydrophila/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Progressão da Doença , Fasciite Necrosante/patologia , Genes Bacterianos , Injeções , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Movimento , Especificidade de Órgãos , Fagocitose , Células RAW 264.7 , Análise de Sobrevida , Virulência
2.
Antimicrob Agents Chemother ; 60(6): 3717-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067323

RESUMO

Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Reposicionamento de Medicamentos , Enterocolite Pseudomembranosa/tratamento farmacológico , Peste/tratamento farmacológico , Infecções por Salmonella/tratamento farmacológico , Trifluoperazina/farmacologia , Amoxapina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Modelos Animais de Doenças , Doxapram/farmacologia , Esquema de Medicação , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/mortalidade , Feminino , Ensaios de Triagem em Larga Escala , Macrófagos/efeitos dos fármacos , Camundongos , Peste/metabolismo , Peste/microbiologia , Peste/mortalidade , Medicamentos sob Prescrição/farmacologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/patogenicidade
3.
Infect Immun ; 83(5): 2065-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754198

RESUMO

The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).


Assuntos
Testes Genéticos/métodos , Mutagênese , Peste/microbiologia , Fatores de Virulência/genética , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Análise de Sobrevida , Virulência
4.
Infect Immun ; 83(4): 1318-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605764

RESUMO

Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.


Assuntos
Aciltransferases/genética , Proteínas da Membrana Bacteriana Externa/genética , Lipoproteínas/genética , Peste/imunologia , Fatores de Virulência/genética , Yersinia pestis/patogenicidade , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana/genética , Aderência Bacteriana/imunologia , Linhagem Celular , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Feminino , Deleção de Genes , Gentamicinas/farmacologia , Células HeLa , Humanos , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Peste/patologia , Yersinia pestis/genética , Yersinia pestis/imunologia
5.
Microb Pathog ; 80: 27-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25697665

RESUMO

We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate.


Assuntos
Deleção de Genes , Lipoproteínas/deficiência , Macrófagos Alveolares/microbiologia , Macrófagos/microbiologia , Peptídeo Hidrolases/deficiência , Ativadores de Plasminogênio/deficiência , Yersinia pestis/crescimento & desenvolvimento , Animais , Células Cultivadas , Humanos , Imunidade Inata , Camundongos , Viabilidade Microbiana , Vacina contra a Peste , Vacinas Atenuadas , Virulência , Yersinia pestis/genética
6.
Appl Environ Microbiol ; 80(14): 4162-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24795370

RESUMO

The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.


Assuntos
Aeromonas hydrophila/genética , Fasciite Necrosante/microbiologia , Genes Bacterianos , Fatores de Virulência/genética , Aeromonas hydrophila/isolamento & purificação , Aeromonas hydrophila/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Modelos Animais de Doenças , Enterotoxinas/metabolismo , Feminino , Água Doce/microbiologia , Estudos de Associação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Camundongos , Filogenia , Peste/microbiologia , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Microbiologia da Água
7.
Antimicrob Agents Chemother ; 55(8): 3752-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628541

RESUMO

Yersinia pestis initiates infection as a facultative intracellular parasite in host macrophages; however, little is known about the efficacy of antibiotics commonly used to treat human plague against intracellular Y. pestis. Intracellular minimal bactericidal concentrations (MBCs) were determined using a high-throughput broth microdilution assay in which human THP-1 macrophage-like cells were infected with Y. pestis strain KIM6-2053.1+ and exposed to 2-fold serial dilutions of antibiotics for 24 h in 96-well plates. The numbers of CFU, upon which minimal bactericidal concentrations were based, were determined by counting "microcolonies" in wells of 96-well plates following lysis of tissue culture cells to release surviving Y. pestis, replica dilution, and plating in soft tryptic soy broth agar. For THP-1 cells, streptomycin and ciprofloxacin had comparable efficacies for intra- and extracellular Y. pestis, but the MBCs for chloramphenicol, gentamicin, doxycycline, and amoxicillin were two-, three-, four-, and five 2-fold serial dilutions greater, respectively, for intracellular than for extracellular Y. pestis. During the initial stage of plague, intracellular Y. pestis may be less susceptible to antibiotic killing by particular antibiotics recommended for treatment of plague, such as gentamicin or doxycycline, whereas others, such as streptomycin and ciprofloxacin, may have similar efficacies against extracellular or intracellular Y. pestis. This may be of particular importance in the selection of antibiotics for prophylactic treatment in the case of a bioterrorism event.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Peste/tratamento farmacológico , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/patogenicidade , Amoxicilina/farmacologia , Animais , Linhagem Celular , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Doxiciclina/farmacologia , Gentamicinas/farmacologia , Humanos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Peste/prevenção & controle , Estreptomicina/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29090192

RESUMO

Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the ßγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.


Assuntos
Proteínas de Bactérias/imunologia , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Vacinas Atenuadas/genética , Fatores de Virulência/imunologia , Yersinia pestis/imunologia , Animais , Proteínas de Bactérias/genética , Simulação por Computador , Modelos Animais de Doenças , Feminino , Fatores Imunológicos/genética , Estimativa de Kaplan-Meier , Macrófagos/imunologia , Camundongos , Fagocitose/imunologia , Vacina contra a Peste/genética , Células RAW 264.7 , Deleção de Sequência , Sistemas de Secreção Tipo VI/genética , Fatores de Virulência/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-27891321

RESUMO

We evaluated the extent of attenuation and immunogenicity of the ΔlppAB and ΔlppAB ΔmsbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. typhimurium or its aforementioned mutant strains. The ΔlppAB ΔmsbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ΔlppAB ΔmsbB mutant-immunized mice when compared to that of the ΔlppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ΔlppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ΔlppAB and ΔlppAB ΔmsbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens.


Assuntos
Acetiltransferases/deficiência , Lipoproteínas/deficiência , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Fatores de Virulência/deficiência , Administração Oral , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Fezes/química , Imunoglobulina A/análise , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Camundongos , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Salmonella typhimurium/genética , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
10.
Clin Vaccine Immunol ; 23(7): 586-600, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170642

RESUMO

Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.


Assuntos
Adenovírus Humanos/genética , Portadores de Fármacos , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Esquemas de Imunização , Injeções Intramusculares , Interferon gama/metabolismo , Macaca fascicularis , Masculino , Camundongos , Peste/patologia , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Análise de Sobrevida , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Replicação Viral , Yersinia pestis/genética , Yersinia pestis/imunologia
11.
PLoS One ; 10(11): e0141984, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536670

RESUMO

BACKGROUND: Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. PRINCIPAL FINDINGS: In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. CONCLUSIONS: These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.


Assuntos
Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Óperon/genética , Peste/microbiologia , Telúrio/farmacologia , Yersinia pestis/patogenicidade , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Teste de Complementação Genética , Imunidade Inata/genética , Camundongos , Peste/tratamento farmacológico , Peste/genética , Virulência/genética , Yersinia pestis/efeitos dos fármacos
12.
Clin Vaccine Immunol ; 22(12): 1255-68, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446423

RESUMO

Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.


Assuntos
Mutação , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Yersinia pestis/genética , Yersinia pestis/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Deleção de Genes , Imunidade Celular , Imunidade Humoral , Imunização , Injeções Intramusculares , Lipoproteínas/imunologia , Camundongos , Peste/imunologia , Peste/microbiologia , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
13.
Res Vet Sci ; 94(2): 306-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23122809

RESUMO

Mechanism of Mycobacterium avium subsp. paratuberculosis (Map) invasion through intestinal mucosa is not completely understood. In the present study, we developed an in vivo multiple-intestinal loop model in lambs to investigate (i) the type of cells involved in the bacterial uptake across the intestinal mucosa, (ii) the efficiency of bacterial uptake in different segments of the small intestine and (iii) the ability of different strains of Map to invade the various segments of the small intestine. Four loops on ileum and four loops each on Peyer's patch and non-Peyer's patch areas of jejunum were constructed by surgical procedure. The caprine, bovine, and vaccine strains of Map were used for infection. Map-infected intestinal loop tissues were collected at 1, 3, 6, 12, and 24 h post-infection and processed for electron microscopy, histology, bacterial culture and bacterial counting. All these parameters revealed that Map invaded through M cells and the enterocytes and bacterial translocation across M cells was greater than the enterocytes. Bacterial invasion was greater in ileal loops when compared to jejunal loops. Within the jejunal loops, bacterial uptake was higher in Peyer's patch areas than that of non-Peyer's patch areas. The caprine and bovine strains of Map showed greater ability for invasion into the small intestinal mucosa than that of the vaccine strain.


Assuntos
Enterócitos/microbiologia , Íleo/citologia , Mucosa Intestinal/citologia , Jejuno/citologia , Mycobacterium avium subsp. paratuberculosis/fisiologia , Doenças dos Ovinos/microbiologia , Animais , Paratuberculose/microbiologia , Ovinos , Fatores de Tempo , Tomografia Computadorizada por Raios X
14.
PLoS One ; 7(7): e42211, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848745

RESUMO

BACKGROUND: Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV), and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. CONCLUSION/SIGNIFICANCE: Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.


Assuntos
Espaço Intracelular/microbiologia , Espaço Intracelular/parasitologia , Macrófagos/citologia , Peste/imunologia , Yersinia pestis/fisiologia , Animais , Linhagem Celular , Cães , Feminino , Macrófagos/microbiologia , Macrófagos/parasitologia , Camundongos
15.
Vet Microbiol ; 150(1-2): 146-51, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21295415

RESUMO

Yersinia pestis inoculated subcutaneously via fleabite or experimental injection in natural rodent hosts multiply initially in macrophage phagolysosomes. Survival and multiplication of Y. pestis in this acidic low [Ca(2+)] and [Mg(2+)] environment likely necessitates compensatory mechanisms involving expression of specific proteins compared to those expressed during extracellular growth. A proteomics approach was used to identify these proteins using mouse macrophage RAW264.7 cells infected with Y. pestis strain KIM6-2053.1+ for 8h. Intracellular Y. pestis protein samples were prepared by detergent lysis of infected RAW264.7 cells, isolation of intracellular Y. pestis by differential centrifugation, and sonication of isolated Y. pestis. Protein samples were similarly prepared from Y. pestis grown extracellularly in tissue culture media. Two intracellular and extracellular Y. pestis protein samples were analyzed by two-dimensional polyacrylamide gel electrophoresis and compared in silico identifying 12 protein spots present in both intracellular samples but absent in extracellularly grown Y. pestis. Mass spectrometry analysis of these identified nine proteins at a high level of confidence in the Y. pestis genome: superoxide dismutase-A (sodA), inorganic pyrophosphatase, autonomous glycyl radical cofactor GrcA, molecular chaperone DnaK, serine endoprotease GsrA, global DNA-binding transcriptional dual regulator H-NS, urease subunit gamma UreA, and tellurite resistance proteins TerD and TerE. These results support the involvement of various general stress response regulators of Y. pestis during the intracellular parasitism of host macrophages as well as identification of UreA, TerD and TerE with as yet unknown roles in the process of intracellular survival of Y. pestis.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Proteômica , Yersinia pestis/fisiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Eletroforese em Gel Bidimensional , Camundongos , Fagossomos/microbiologia , Yersinia pestis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA