Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572112

RESUMO

AR-15512 (formerly known as AVX-012 and WS-12) is a TRPM8 receptor agonist currently in phase 2b clinical trials for the treatment of dry eye. This bioactive compound with menthol-like cooling activity has three stereogenic centers, and its final structure and absolute configuration, (1R,2S,5R), have been previously solved by cryo-electron microscopy. The route of synthesis of AR-15512 has also been reported, revealing that epimerization processes at the C-1 can occur at specific stages of the synthesis. In order to confirm that the desired configuration of AR-15512 does not change throughout the process and to discard the presence of the enantiomer in the final product due to possible contamination of the initial starting material, both the enantiomer of AR-15512 and the diastereomer at the C-1 were synthesized and fully characterized. In addition, the absolute configuration of the (1S,2S,5R)-diastereomer was determined by X-ray crystallographic analysis, and new HPLC methods were designed and developed for the identification of the two stereoisomers and their comparison with the clinical candidate AR-15512.


Assuntos
Anilidas/química , Anilidas/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Mentol/análogos & derivados , Canais de Cátion TRPM/agonistas , Cristalografia por Raios X , Humanos , Mentol/química , Mentol/farmacologia , Estrutura Molecular , Estereoisomerismo
2.
Pharmaceutics ; 15(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37896141

RESUMO

Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer's disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs) that have been pointed out as relevant targets in AD. In this work, we explored structural modifications of well-established I2-IR ligands, giving access to derivatives with an imidazole-linked heterocycle as a common key feature. We report the synthesis, the affinity in human I2-IRs, the brain penetration capabilities, the in silico ADMET studies, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of this new bunch of I2-IR ligands. Selected compounds showed neuroprotective properties and beneficial effects in an in vitro model of Parkinson's disease, rescued the human dopaminergic cell line SH-SY5Y from death after treatment with 6-hydroxydopamine, and showed crucial anti-inflammatory effects in a cellular model of neuroinflammation. After a preliminary pharmacokinetic study, we explored the action of our representative 2-(benzo[b]thiophen-2-yl)-1H-imidazole LSL33 in a mouse model of AD (5xFAD). Oral administration of LSL33 at 2 mg/Kg for 4 weeks ameliorated 5XFAD cognitive impairment and synaptic plasticity, as well as reduced neuroinflammation markers. In summary, this new I2-IR ligand that promoted beneficial effects in a well-established AD mouse model should be considered a promising therapeutic strategy for neurodegeneration.

3.
Br J Pharmacol ; 178(15): 3017-3033, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33817786

RESUMO

BACKGROUND AND PURPOSE: The development of effective therapeutic strategies against Alzheimer's disease (AD) remains a challenge. I2 imidazoline receptor ligands have a neuroprotective role in AD. Moreover, co-treatment of AChE inhibitors with neuroprotective agents have shown better effects on the prevention of dementia. Here, we assessed the potential therapeutic effect of the I2 ligand, donepezil and their combination in 5XFAD mice. EXPERIMENTAL APPROACH: 5XFAD female mice were treated with low doses (1 mg·kg-1 ·day-1 ) of LSL60101, donepezil and donepezil plus LSL60101, during 4 weeks per os. Novel object recognition, Morris water maze, open field, elevated plus maze and three-chamber tests were used to evaluate the cognitive and behavioural status after treatment. The effects on AD-like pathology were assessed with immunohistochemistry, western blot, ELISA and qPCR. KEY RESULTS: Chronic low-dose treatment with LSL60101 and donepezil reversed cognitive deficits and impaired social behaviour. LSL60101 treatment did not affect anxiety-like behaviour in contrast to donepezil. In the 5XFAD brains, LSL60101 and donepezil/LSL60101 treatments attenuated amyloid-ß pathology by decreasing amyloid-ß40 and amyloid-ß42 levels, amyloid-ß plaque number and tau hyperphosphorylation. These alterations were accompanied by reduced microglia marker Iba-1 levels and increased Trem2 gene expression. LSL60101 and donepezil decreased glial fibrillary acidic protein (GFAP) astrocytic marker reactivity. However, only LSL60101 and donepezil/LSL60101 treatments significantly increased the synaptic marker levels of post-synaptic density protein 95 and synaptophysin. CONCLUSION AND IMPLICATIONS: Chronic low-dose treatment with selective I2 - ligands can be an effective treatment for AD and provide insights into combination treatments for symptomatic and disease-modifying drugs.


Assuntos
Doença de Alzheimer , Receptores de Imidazolinas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Donepezila , Feminino , Ligantes , Camundongos , Camundongos Transgênicos
4.
Geroscience ; 43(2): 965-983, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128688

RESUMO

Brain aging and dementia are current problems that must be solved. The levels of imidazoline 2 receptors (I2-IRs) are increased in the brain in Alzheimer's disease (AD) and other neurodegenerative diseases. We tested the action of the specific and selective I2-IR ligand B06 in a mouse model of accelerated aging and AD, the senescence-accelerated mouse prone 8 (SAMP8) model. Oral administration of B06 for 4 weeks improved SAMP8 mouse behavior and cognition and reduced AD hallmarks, oxidative stress, and apoptotic and neuroinflammation markers. Likewise, B06 regulated glial excitatory amino acid transporter 2 and N-methyl-D aspartate 2A and 2B receptor subunit protein levels. Calcineurin (CaN) is a phosphatase that controls the phosphorylation levels of cAMP response element-binding (CREB), apoptotic mediator BCL-2-associated agonist of cell death (BAD) and GSK3ß, among other molecules. Interestingly, B06 was able to reduce the levels of the CaN active form (CaN A). Likewise, CREB phosphorylation, BAD gene expression, and other factors were modified after B06 treatment. Moreover, phosphorylation of a target of CaN, nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), was increased in B06-treated mice, impeding the transcription of genes related to neuroinflammation and neural plasticity. In summary, this I2 imidazoline ligand can exert its beneficial effects on age-related conditions by modulating CaN pathway action and affecting several molecular pathways, playing a neuroprotective role in SAMP8 mice.


Assuntos
Calcineurina , Disfunção Cognitiva , Receptores de Imidazolinas , Envelhecimento , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Hipocampo , Camundongos
5.
J Med Chem ; 64(24): 17887-17900, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34898210

RESUMO

Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Automação , Descoberta de Drogas/métodos , Humanos , Ligantes
6.
Eur J Med Chem ; 222: 113540, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118720

RESUMO

Recent findings unveil the pharmacological modulation of imidazoline I2 receptors (I2-IR) as a novel strategy to face unmet medical neurodegenerative diseases. In this work, we report the chemical characterization, three-dimensional quantitative structure-activity relationship (3D-QSAR) and ADMET in silico of a family of benzofuranyl-2-imidazoles that exhibit affinity against human brain I2-IR and most of them have been predicted to be brain permeable. Acute treatment in mice with 2-(2-benzofuranyl)-2-imidazole, known as LSL60101 (garsevil), showed non-warning properties in the ADMET studies and an optimal pharmacokinetic profile. Moreover, LSL60101 induced hypothermia in mice while decreased pro-apoptotic FADD protein in the hippocampus. In vivo studies in the familial Alzheimer's disease 5xFAD murine model with the representative compound, revealed significant decreases in the protein expression levels of antioxidant enzymes superoxide dismutase and glutathione peroxidase in hippocampus. Overall, LSL60101 plays a neuroprotective role by reducing apoptosis and modulating oxidative stress.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzofuranos/farmacologia , Imidazóis/farmacologia , Receptores de Imidazolinas/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Receptores de Imidazolinas/metabolismo , Ligantes , Masculino , Camundongos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Pharmaceutics ; 12(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456135

RESUMO

Behavioural and psychological symptoms of dementia (BPSD), including fear-anxiety- and depressive-like behaviour, are present in Alzheimer's disease (AD), together with memory decline. I2-imidazoline receptors (I2-IRs) have been associated with neuropsychiatric and neurodegenerative disorders, further, I2-IR ligands have demonstrated a neuroprotective role in the central nervous system (CNS). In this study, we assessed the effect of the I2-IR ligand MCR5 on both cognitive and non-cognitive symptoms in the Senescence accelerated mice prone 8 (SAMP8) mouse model. Oral administration of I2-IR ligand MCR5 (5 mg/kg/day for four weeks) in 10-month SAMP8 mice ameliorated both BPSD-like phenotype and cognitive decline by attenuating depressive-like behaviour, reducing fear-anxiety-like behaviour and improving cognitive performance using different tasks. Interaction of I2-IR ligand MCR5 with serotoninergic system did not account for behavioural or cognitive improvement, although changes in molecular pathways underlying depression and anxiety phenotype were observed. MCR5 increased levels of p-AKT, phosphorylated glycogen synthase kinase 3 ß (GSK3ß) at Ser9 and phosphorylated mammalian target of rapamycin complex 1 (mTORC1) levels in SAMP8 treated mice compared to SAMP8 control. Moreover, MCR5 treatment altered N-methyl-d-aspartate receptor (NMDA) 2B phosphorylation, and decreased the protein levels of phosphorylated cyclin-dependent kinase 5 (p-CDK5) and dopamine- and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein of Mr 32 kDa phosphorylated at Thr75 (p-DARPP32), with a parallel increase in protein kinase A (PKA) and p-cAMP response element-binding (pCREB) levels. Consistent with these changes MCR5 attenuated neuroinflammation by decreasing expression of pro-inflammatory markers such as Tumor necrosis factor-alpha (Tnf-α), Interleukin 1ß (Il-1ß), Interleukin 6 (Il-6), and promoted synaptic plasticity by increasing levels of postsynaptic density protein 95 (PSD95) as well as ameliorating tropomyosin-related kinase B (TrkB) and nerve growth factor receptor (NGFR) signalling. Collectively, these results increase the potential of highly selective I2-IR ligands as therapeutic agents in age-related BPSD and cognitive alterations.

8.
Biomed Pharmacother ; 121: 109601, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739159

RESUMO

BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. The mitochondrial isozyme, PEPCK-M is highly expressed in cancer cells, where it plays a role in nutrient stress response. To date, pharmacological strategies to target this pathway have not been pursued. METHODS: A compound embodying a 3-alkyl-1,8-dibenzylxanthine nucleus (iPEPCK-2), was synthesized and successfully probed in silico on a PEPCK-M structural model. Potency and target engagement in vitro and in vivo were evaluated by kinetic and cellular thermal shift assays (CETSA). The compound and its target were validated in tumor growth models in vitro and in murine xenografts. RESULTS: Cross-inhibitory capacity and increased potency as compared to 3-MPA were confirmed in vitro and in vivo. Treatment with iPEPCK-2 inhibited cell growth and survival, especially in poor-nutrient environment, consistent with an impact on colony formation in soft agar. Finally, daily administration of the PEPCK-M inhibitor successfully inhibited tumor growth in two murine xenograft models as compared to vehicle, without weight loss, or any sign of apparent toxicity. CONCLUSION: We conclude that iPEPCK-2 is a compelling anticancer drug targeting PEPCK-M, a hallmark gene product involved in metabolic adaptations of the tumor.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fosfoenolpiruvato Carboxiquinase (ATP)/antagonistas & inibidores , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Animais , Biomarcadores Tumorais/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Estrutura Secundária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
J Med Chem ; 63(7): 3610-3633, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150414

RESUMO

Imidazoline I2 receptors (I2-IR), widely distributed in the CNS and altered in patients that suffer from neurodegenerative disorders, are orphans from a structural point of view, and new I2-IR ligands are urgently required for improving their pharmacological characterization. We report the synthesis and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of a new family of bicyclic α-iminophosphonates endowed with relevant affinities for human brain I2-IR. Acute treatment in mice with a selected compound significantly decreased Fas-associated protein with death domain (FADD) in the hippocampus, a key signaling mediator of neuroprotective actions. Additionally, in vivo studies in the familial Alzheimer's disease 5xFAD murine model revealed beneficial effects in behavior and cognition. These results are supported by changes in molecular pathways related to cognitive decline and Alzheimer's disease. Therefore, bicyclic α-iminophosphonates are tools that may open new therapeutic avenues for I2-IR, particularly for unmet neurodegenerative conditions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Imidazóis/uso terapêutico , Receptores de Imidazolinas/metabolismo , Nootrópicos/uso terapêutico , Organofosfonatos/uso terapêutico , Animais , Chlorocebus aethiops , Reação de Cicloadição , Cães , Feminino , Células HeLa , Hipocampo/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Imidazóis/farmacocinética , Ligantes , Células Madin Darby de Rim Canino , Camundongos , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/farmacocinética , Organofosfonatos/síntese química , Organofosfonatos/metabolismo , Organofosfonatos/farmacocinética , Relação Quantitativa Estrutura-Atividade , Células Vero
10.
Cells ; 9(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861674

RESUMO

Changes in phosphoenolpyruvate (PEP) concentrations secondary to variations in glucose availability can regulate calcium signaling in T cells as this metabolite potently inhibits the sarcoplasmic reticulum Ca2+/ATPase pump (SERCA). This regulation is critical to assert immune activation in the tumor as T cells and cancer cells compete for available nutrients. We examined here whether cytosolic calcium and the activation of downstream effector pathways important for tumor biology are influenced by the presence of glucose and/or cataplerosis through the phosphoenolpyruvate carboxykinase (PEPCK) pathway, as both are hypothesized to feed the PEP pool. Our data demonstrate that cellular PEP parallels extracellular glucose in two human colon carcinoma cell lines, HCT-116 and SW480. PEP correlated with cytosolic calcium and NFAT activity, together with transcriptional up-regulation of canonical targets PTGS2 and IL6 that was fully prevented by CsA pre-treatment. Similarly, loading the metabolite directly into the cell increased cytosolic calcium and NFAT activity. PEP-stirred cytosolic calcium was also responsible for the calmodulin (CaM) dependent phosphorylation of c-Myc at Ser62, resulting in increased activity, probably through enhanced stabilization of the protein. Protein expression of several c-Myc targets also correlated with PEP levels. Finally, the participation of PEPCK in this axis was interrogated as it should directly contribute to PEP through cataplerosis from TCA cycle intermediates, especially in glucose starvation conditions. Inhibition of PEPCK activity showed the expected regulation of PEP and calcium levels and consequential downstream modulation of NFAT and c-Myc activities. Collectively, these results suggest that glucose and PEPCK can regulate NFAT and c-Myc activities through their influence on the PEP/Ca2+ axis, advancing a role for PEP as a second messenger communicating metabolism, calcium cell signaling, and tumor biology.


Assuntos
Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Citosol/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato/farmacologia , Sinalização do Cálcio , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise , Células HCT116 , Humanos , Interleucina-6/genética , Fatores de Transcrição NFATC , Proteínas Proto-Oncogênicas c-myc/genética
11.
Neurotherapeutics ; 16(2): 416-431, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460457

RESUMO

As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer's disease have become more common. I2-Imidazoline receptors (I2-IR) are widely distributed in the central nervous system, and dysregulation of I2-IR in patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence indicates that high-affinity selective I2-IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the female senescence accelerated mouse-prone 8 mice have shown that treatment with I2-IR ligands, MCR5 and MCR9, produce beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I2-IR ligands diminished the amyloid precursor protein processing pathway and increased Aß degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I2-IR ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Receptores de Imidazolinas/agonistas , Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
12.
ACS Chem Neurosci ; 8(4): 737-742, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28029766

RESUMO

The imidazoline I2 receptors (I2-IRs) are widely distributed in the brain, and I2-IR ligands may have therapeutic potential as neuroprotective agents. Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands devoid of α2-adrenoceptor (α2-AR) affinity is likely to provide valuable tools in defining the pharmacological characterization of these receptors. We report the pharmacological characterization of a new family of (2-imidazolin-4-yl)phosphonates. Radioligand binding studies showed that they displayed a higher affinity for I2-IRs than idazoxan, and high I2/α2 selectivity. In vivo studies in mice showed that acute treatments with 1b and 2c significantly increased p-FADD/FADD ratio (an index of cell survival) in the hippocampus when compared with vehicle-treated controls. Additionally, acute and repeated treatments with 2c, but not with 1b, markedly reduced hippocampal p35 cleavage into neurotoxic p25. The present results indicate a neuroprotective potential of (2-imidazolin-4-yl)phosphonates acting at I2-IRs.


Assuntos
Encéfalo/efeitos dos fármacos , Receptores de Imidazolinas/agonistas , Imidazolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Imidazolinas/síntese química , Imidazolinas/química , Ligantes , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA