Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(1): 3-9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417864

RESUMO

2021 marks the 30th anniversary of the revelation that cyclosporin A and FK506 act in a way previously not seen-as "molecular glues" that induce neo-protein-protein associations. As a torrent of new molecular-glue probes and medicines are fueling interest in this field, I explore the arc of this story.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/química , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Tacrolimo/química , Tacrolimo/farmacologia
2.
Cell ; 184(5): 1142-1155, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667368

RESUMO

The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients. Approaches to understand the function and circuitry of cancer genes provide complementary approaches to elucidate both oncogene and non-oncogene dependencies. Emerging work indicates that the diversity of therapeutic targets engendered by non-oncogene dependencies is much larger than the list of recurrently mutated genes. Here we describe a framework for this expanded list of cancer targets, providing novel opportunities for clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Neoplasias/genética , Neoplasias/patologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
3.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730809

RESUMO

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Assuntos
Cisteína/metabolismo , Ligantes , Linfócitos T/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Acrilamidas/química , Acrilamidas/farmacologia , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730859

RESUMO

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Assuntos
Genes Modificadores , Mitocôndrias/genética , Mitocôndrias/patologia , Autoantígenos/metabolismo , Morte Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Epistasia Genética/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Genoma , Glutationa Peroxidase/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Oligomicinas/toxicidade , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
5.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340340

RESUMO

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/antagonistas & inibidores , Acetilação , Animais , Glicemia/metabolismo , Células Cultivadas , Glucose/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Resistência à Insulina , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo
6.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666119

RESUMO

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromossomos Humanos Par 17/metabolismo , Técnicas de Silenciamento de Genes , Haplótipos , Hepatócitos/metabolismo , Heterozigoto , Código das Histonas , Humanos , Fígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
7.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641501

RESUMO

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Diferenciação Celular , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células Mieloides/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
9.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046436

RESUMO

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , National Institutes of Health (U.S.) , Estados Unidos
10.
Mol Cell ; 82(4): 728-740, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34965379

RESUMO

Ferroptosis is a unique type of non-apoptotic cell death resulting from the unrestrained occurrence of peroxidized phospholipids, which are subject to iron-mediated production of lethal oxygen radicals. This cell death modality has been detected across many organisms, including in mammals, where it can be used as a defense mechanism against pathogens or even harnessed by T cells to sensitize tumor cells toward effective killing. Conversely, ferroptosis is considered one of the main cell death mechanisms promoting degenerative diseases. Emerging evidence suggests that ferroptosis represents a vulnerability in certain cancers. Here, we critically review recent advances linking ferroptosis vulnerabilities of dedifferentiating and persister cancer cells to the dependency of these cells on iron, a potential Achilles heel for small-molecule intervention. We provide a perspective on the mechanisms reliant on iron that contribute to the persister cancer cell state and how this dependency may be exploited for therapeutic benefits.


Assuntos
Ferroptose , Ferro/metabolismo , Peroxidação de Lipídeos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/uso terapêutico , Diferenciação Celular , Ferroptose/efeitos dos fármacos , Homeostase , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
11.
Cell ; 156(1-2): 317-331, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439385

RESUMO

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.


Assuntos
Carbolinas/farmacologia , Morte Celular/efeitos dos fármacos , Glutationa Peroxidase/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Xenoenxertos , Humanos , Linfoma de Células B/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
12.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993102

RESUMO

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/genética
13.
Cell ; 150(3): 575-89, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863010

RESUMO

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.


Assuntos
Azepinas/farmacologia , Descoberta de Drogas , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Megacariócitos/metabolismo , Poliploidia , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Megacarioblástica Aguda/genética , Megacariócitos/citologia , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/metabolismo
14.
Nat Chem Biol ; 20(2): 170-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919549

RESUMO

Small molecules that induce protein-protein associations represent powerful tools to modulate cell circuitry. We sought to develop a platform for the direct discovery of compounds able to induce association of any two preselected proteins, using the E3 ligase von Hippel-Lindau (VHL) and bromodomains as test systems. Leveraging the screening power of DNA-encoded libraries (DELs), we synthesized ~1 million DNA-encoded compounds that possess a VHL-targeting ligand, a variety of connectors and a diversity element generated by split-and-pool combinatorial chemistry. By screening our DEL against bromodomains in the presence and absence of VHL, we could identify VHL-bound molecules that simultaneously bind bromodomains. For highly barcode-enriched library members, ternary complex formation leading to bromodomain degradation was confirmed in cells. Furthermore, a ternary complex crystal structure was obtained for our most enriched library member with BRD4BD1 and a VHL complex. Our work provides a foundation for adapting DEL screening to the discovery of proximity-inducing small molecules.


Assuntos
Proteínas Nucleares , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Ubiquitina-Proteína Ligases/metabolismo , DNA
15.
Nature ; 581(7809): 459-464, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461653

RESUMO

Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.


Assuntos
Genes Essenciais/efeitos dos fármacos , Genes Essenciais/genética , Mutação com Perda de Função/genética , Terapia de Alvo Molecular , Artefatos , Automação , Consanguinidade , Éxons/genética , Mutação com Ganho de Função/genética , Frequência do Gene , Técnicas de Silenciamento de Genes , Heterozigoto , Homozigoto , Humanos , Proteína Huntingtina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doenças Neurodegenerativas/genética , Proteínas Priônicas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra , Proteínas tau/genética
16.
Nature ; 585(7826): 603-608, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939090

RESUMO

Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.


Assuntos
Éteres/metabolismo , Ferroptose , Peroxissomos/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Éteres/química , Feminino , Edição de Genes , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Peroxidação de Lipídeos , Masculino , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Peroxissomos/genética
17.
Nat Chem Biol ; 19(11): 1320-1330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783940

RESUMO

Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events affect protein function, however, remains challenging. Here we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers more than 13,800 cysteines on more than 1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in more than 160 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.


Assuntos
Cisteína , Neoplasias , Humanos , Cisteína/química , Proteômica , Edição de Genes , Proteoma/química , Neoplasias/genética , Proteínas Nucleares
18.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994671

RESUMO

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Assuntos
Proteínas do Domínio Armadillo , Cisteína , Proteínas do Citoesqueleto , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Axônios , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Homeostase , NAD+ Nucleosidase , Proteômica
19.
J Am Chem Soc ; 146(15): 10393-10406, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569115

RESUMO

Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.


Assuntos
Acrilamida , Diterpenos , Fenantrenos , Humanos , Cisteína/química , Proteômica , Compostos de Epóxi
20.
Nature ; 561(7723): 420, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30046103

RESUMO

This Letter is being retracted owing to issues with Fig. 1d and Supplementary Fig. 31b, and the unavailability of original data for these figures that raise concerns regarding the integrity of the figures. Nature published two previous corrections related to this Letter1,2. These issues in aggregate undermine the confidence in the integrity of this study. Authors Michael Foley, Monica Schenone, Nicola J. Tolliday, Todd R. Golub, Steven A. Carr, Alykhan F. Shamji, Andrew M. Stern and Stuart L. Schreiber agree with the Retraction. Authors Lakshmi Raj, Takao Ide, Aditi U. Gurkar, Anna Mandinova and Sam W. Lee disagree with the Retraction. Author Xiaoyu Li did not respond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA