Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973151

RESUMO

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Assuntos
Fibroblastos , Íntrons , Fosfolipase C gama , RNA Mensageiro , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Células Cultivadas , Osteoartrite/metabolismo , Osteoartrite/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/efeitos dos fármacos , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética
2.
Cell Biochem Funct ; 42(2): e3987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509770

RESUMO

Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.


Assuntos
Osteossarcoma , Serpinas , Animais , Humanos , Inteínas/genética , Processamento de Proteína , Serpinas/genética , Osteossarcoma/genética , Mamíferos
3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982205

RESUMO

Viral respiratory tract infections (RTIs) are responsible for significant morbidity and mortality worldwide. A prominent feature of severe respiratory infections, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the cytokine release syndrome. Therefore, there is an urgent need to develop different approaches both against viral replication and against the consequent inflammation. N-acetylglucosamine (GlcNAc), a glucosamine (GlcN) derivative, has been developed as an immunomodulatory and anti-inflammatory inexpensive and non-toxic drug for non-communicable disease treatment and/or prevention. Recent studies have suggested that GlcN, due to its anti-inflammatory activity, could be potentially useful for the control of respiratory virus infections. Our present study aimed to evaluate in two different immortalized cell lines whether GlcNAc could inhibit or reduce both viral infectivity and the inflammatory response to viral infection. Two different viruses, frequent cause of upper and lower respiratory tract infections, were used: the H1N1 Influenza A virus (IAV) (as model of enveloped RNA virus) and the Human adenovirus type 2 (Adv) (as model of naked DNA virus). Two forms of GlcNAc have been considered, bulk GlcNAc and GlcNAc in nanoform to overcome the possible pharmacokinetic limitations of GlcNAc. Our study suggests that GlcNAc restricts IAV replication but not Adv infection, whereas nano-GlcNAc inhibits both viruses. Moreover, GlcNAc and mainly its nanoformulation were able to reduce the pro-inflammatory cytokine secretion stimulated by viral infection. The correlation between inflammatory and infection inhibition is discussed.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Pneumonia , Infecções Respiratórias , Viroses , Humanos , Antivirais/farmacologia , Acetilglucosamina/farmacologia , SARS-CoV-2 , Infecções Respiratórias/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Glucosamina/farmacologia , Adenoviridae
4.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241786

RESUMO

Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.


Assuntos
Viroses , Humanos , Viroses/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Resveratrol/farmacologia , Inflamação/tratamento farmacológico
5.
Curr Issues Mol Biol ; 44(8): 3481-3495, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005136

RESUMO

Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.

6.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008693

RESUMO

Pheomelanin is a natural yellow-reddish sulfur-containing pigment derived from tyrosinase-catalyzed oxidation of tyrosine in presence of cysteine. Generally, the formation of melanin pigments is a protective response against the damaging effects of UV radiation in skin. However, pheomelanin, like other photosensitizing substances, can trigger, following exposure to UV radiation, photochemical reactions capable of modifying and damaging cellular components. The photoproperties of this natural pigment have been studied by analyzing pheomelanin effect on oxidation/nitration of tyrosine induced by UVB radiation at different pH values and in presence of iron ions. Photoproperties of pheomelanin can be modulated by various experimental conditions, ranging from the photoprotection to the triggering of potentially damaging photochemical reactions. The study of the photomodification of l-Tyrosine in the presence of the natural pigment pheomelanin has a special relevance, since this tyrosine oxidation/nitration pathway can potentially occur in vivo in tissues exposed to sunlight and play a role in the mechanisms of tissue damage induced by UV radiation.


Assuntos
Melaninas/metabolismo , Tirosina/metabolismo , Raios Ultravioleta , Ferro/metabolismo , Melaninas/biossíntese , Melaninas/química , Nitritos/metabolismo , Nitrosação/efeitos da radiação , Oxirredução/efeitos da radiação , Ácido Peroxinitroso/metabolismo , Oxigênio Singlete/metabolismo
7.
Int J Mol Sci ; 22(4)2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562013

RESUMO

The glucosamine derivative 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-ß-D-glucose (NAPA), was shown to inhibit the kinase activity of IKKα, one of the two catalytic subunits of IKK complex, decreasing the inflammatory status in osteoarthritis chondrocytes. In the present work we have investigated the inhibition mechanism of IKKα by NAPA by combining computational simulations, in vitro assays and Mass Spectrometry (MS) technique. The kinase in vitro assay was conducted using a recombinant IKKα and IKKtide, a 20 amino acid peptide substrate derived from IkBα kinase protein and containing the serine residues Ser32 and Ser36. Phosphorylated peptide production was measured by Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS), and the atomic interaction between IKKα and NAPA has been studied by molecular docking and Molecular Dynamics (MD) approaches. Here we report that NAPA was able to inhibit the IKKα kinase activity with an IC50 of 0.5 mM, to decrease the Km value from 0.337 mM to 0.402 mM and the Vmax from 0.0257 mM·min-1 to 0.0076 mM·min-1. The computational analyses indicate the region between the KD, ULD and SDD domains of IKKα as the optimal binding site explored by NAPA. Biochemical data indicate that there is a non-significant difference between Km and Ki whereas there is a statistically significant difference between the two Vmax values. This evidence, combined with computational results, consistently indicates that the inhibition is non-competitive, and that the NAPA binding site is different than that of ATP or IKKtide.


Assuntos
Química Computacional/métodos , Quinase I-kappa B/química , Osteoartrite/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/fisiologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Humanos , Quinase I-kappa B/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Osteoartrite/patologia , Domínios Proteicos/fisiologia , Inibidores de Proteínas Quinases/química
8.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771097

RESUMO

Cannabis sativa L. crops have been traditionally exploited as sources of fibers, nutrients, and bioactive phytochemicals of medical interest. In the present study, two terpene-rich organic extracts, namely FOJ and FOS, obtained from Felina 32 hemp inflorescences collected in June and September, respectively, have been studied for their in vitro anticancer properties. Particularly, their cytotoxicity was evaluated in different cancer cell lines, and the possible entourage effect between nonintoxicating phytocannabinoids (cannabidiol and cannabichromene) and caryophyllane sesquiterpenes (ß-caryophyllene, ß-caryophyllene oxide and α-humulene), as identified at GC/MS analysis, was characterized. Modulation of cannabinoid CB1 and CB2 receptors was studied as a mechanistic hypothesis. Results highlighted marked cytotoxic effects of FOJ, FOS, and pure compounds in triple negative breast cancer MDA-MB-468 cells, likely mediated by a CB2 receptor activation. Cannabidiol was the main cytotoxic constituent, although low levels of caryophyllane sesquiterpenes and cannabichromene induced potentiating effects; the presence in the extracts of unknown antagonistic compounds has been highlighted too. These results suggest an interest in Felina 32 hemp inflorescences as a source of bioactive phytocomplexes with anticancer properties and strengthen the importance of considering the possible involvement of minor terpenes, such as caryophyllane sesquiterpenes, in the entourage effect of hemp-based extracts.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inflorescência/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Antineoplásicos Fitogênicos/química , Cannabis/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos/química , Receptor CB2 de Canabinoide/metabolismo , Neoplasias de Mama Triplo Negativas
9.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500850

RESUMO

The metabolite profile of fresh Goji berries from two cultivars, namely Big Lifeberry (BL) and Sweet Lifeberry (SL), grown in the Lazio region (Central Italy) and harvested at two different periods, August and October, corresponding at the beginning and the end of the maturation, was characterized by means of nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS) methodologies. Several classes of compounds such as sugars, amino acids, organic acids, fatty acids, polyphenols, and terpenes were identified and quantified in hydroalcoholic and organic Bligh-Dyer extracts. Sweet Lifeberry extracts were characterized by a higher content of sucrose with respect to the Big Lifeberry ones and high levels of amino acids (glycine, betaine, proline) were observed in SL berries harvested in October. Spectrophotometric analysis of chlorophylls and total carotenoids was also carried out, showing a decrease of carotenoids during the time. These results can be useful not only to valorize local products but also to suggest the best harvesting period to obtain a product with a chemical composition suitable for specific industrial use. Finally, preliminary studies regarding both the chemical characterization of Goji leaves generally considered a waste product, and the biological activity of Big Lifeberry berries extracts was also investigated. Goji leaves showed a chemical profile rich in healthy compounds (polyphenols, flavonoids, etc.) confirming their promising use in the supplements/nutraceutical/cosmetic field. MG63 cells treated with Big Lifeberry berries extracts showed a decrease of iNOS, COX-2, IL-6, and IL-8 expression indicating their significant biological activity.


Assuntos
Antioxidantes/química , Lycium/química , Extratos Vegetais/química , Carotenoides/química , Ácidos Graxos/química , Frutas , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Polifenóis/química
10.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197295

RESUMO

Wound healing is a dynamic process that can be seriously delayed by many factors including infectious complications. The development of dressings with intrinsic wound healing activity and/or releasing bioactive compounds may help with addressing such an issue. In this study, hyaluronic acid (HA) at different percentages (1-35%) was used to modify chitosan (CS) biological and physico-chemical properties in order to obtain 2D-matrices able to promote healing and protect from infection. HA incorporation in the CS matrix decreased film transparency and homogeneity, but improved film water uptake and surface wettability. The water vapor transmission rate (WVTR) increased up to a 5% HA content, where it reached the highest value (672 g/m2 day), and decreased for higher HA contents. At all of the tested HA concentrations, HA affected mechanical properties providing matrices more flexible than pure CS with benefit for wound care. Pure CS films permitted S. epidermidis adhesion and biofilm formation. That was not true for CS/HA matrices, where HA at concentrations equal to or greater than 5% was able to avoid S. epidermidis adhesion. Fibroblasts adhesion also took benefit from the HA presence in the film, especially at 5% content, where the best adhesion and proliferation was found.


Assuntos
Bandagens , Quitosana , Fibroblastos/metabolismo , Ácido Hialurônico , Membranas Artificiais , Staphylococcus epidermidis/crescimento & desenvolvimento , Aderência Bacteriana , Adesão Celular , Células Cultivadas , Fibroblastos/microbiologia , Fibroblastos/patologia , Humanos , Masculino
11.
J Am Coll Nutr ; 37(7): 589-597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652575

RESUMO

OBJECTIVE: The aim of the present study was to investigate how different extravirgin olive oils (EVOOs), obtained by blending Olea europea cultivars, could influence the cell growth, the response to inflammatory stimuli, and oxidative stress in a culture of the osteosarcoma cell line Saos-2. METHODS: Three different extravirgin olive oils were physicochemically characterized, determining the free acidity, the oxidation status, the polyphenols content, and the antioxidative activity. Moreover, the effects on Saos-2 cell culture were determined, studying the mRNA expression level by real-time polymerase chain reaction (PCR) assays and the antioxidative activity using fluorescent probes. RESULTS: The cultivars used in the south of Italy, yield extravirgin oils with different amount of fatty acids and polyphenols, which counteract induction of proinflammatory cytokines and regulate free radical production in hydrogen peroxide-stimulated cells. In vitro analysis using the human osteoblast cell line Saos-2 showed that the addition of oils to cell culture simulated a hypoxic stress followed by a reoxygenation period, during which the antioxidant activity of extravirgin olive oils protected cells from oxidative damages. On the other hand, the mRNA expression levels of factors involved in inflammatory processes, cell growth recovery, and antioxidant response, as heme oxygenase-1, were differently stimulated by EVOOs. Moreover, peroxisome proliferator activated receptor γ (PPARγ) was differently modulated by EVOOs. CONCLUSION: These findings show that the blending of different extravirgin olive oil can impact an osteoblast cell line, in particular regarding cell growth recovery and oxidative stress.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Olea/química , Azeite de Oliva/farmacologia , Osteoblastos/efeitos dos fármacos , PPAR gama/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Azeite de Oliva/química , Osteoblastos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/genética , Espécies Reativas de Oxigênio
12.
J Am Coll Nutr ; 36(4): 268-272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443720

RESUMO

OBJECTIVE: Herbal extract compositions are largely used to manage vein diseases. We prepared a new composition of herbs, named FLEBO OK™, that, when administered as a nutraceutical to patients affected by peripheral vascular diseases, was able to improve their health conditions. We analyzed the effects of this nutraceutical composition on in vitro cultured cells with the aim to obtain information about its mechanisms of action. METHODS: A culture of human osteoblast cell line Saos-2 was stimulated with tumor necrosis factor (TNF)-α or interleukin (IL)-1ß to induce the expression of some chemokines and matrix metalloproteases (MMPs). This cell culture was then exposed to the prepared composition and the amount of expression of the genes coding for the monocyte chemotactic protein (MCP)-1, IL-8, IL-1ß, MMP-2, MMP-3, MMP-9 proteins was measured by real-time polymerase chain reaction (RT-PCR). The experiments were repeated exposing the cells to the same amount of the well-known micronized purified flavonoid fraction. Moreover, we describe the effects of the administration of nutraceutical composition to 20 patients affected by peripheral vascular diseases and 20 healthy individuals. RESULTS: The RT-PCR analyses showed that the new composition induces the expression of MMP-3 and MMP-9 and downregulates MMP-2 in cell cultures stimulated with IL-1ß, whereas it induces the expression of IL-8 and represses the expression of IL-1ß and MCP-1 in cell cultures stimulated with TNF-α. The induction of the expression of MMP-3 and the downregulation of MCP-1 might result in an antiplatelet activity that was not observed for the micronized purified flavonoid fraction. Interviewed patients reported an improvement in their conditions after 1 month of FLEBO OK treatment. CONCLUSION: These findings could provide a hypothesis for the high efficiency of the identified nutraceutical composition to management of peripheral vascular diseases.


Assuntos
Suplementos Nutricionais , Osteoblastos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Citocinas/farmacologia , Regulação da Expressão Gênica , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Síndrome das Pernas Inquietas/tratamento farmacológico , Varizes/tratamento farmacológico
13.
J Am Coll Nutr ; 35(6): 559-567, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27314492

RESUMO

OBJECTIVES: This study aimed to investigate the effects of a nutraceutical composition on the expression of some genes involved in muscle cells and functioning in osteoblast cells. The effects of nutraceutical composition have been compared to the effects of atorvastatin, which induces muscle pain and elevated creatine phosphokinase (CPK) serum level when administered to patients. In particular, we analyzed the MyoD-1 gene, which is responsible for modulation of the CPK gene, which is a marker of muscle pain and damage. METHODS: The effects of nutraceutical composition on Saos-2 cells were compared with the effects of atorvastatin. The mRNAs were extracted and the expression levels of mitochondrial and cytoplasmic CPK genes and MyoD-1 were analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, the effects on lactate dehydrogenase (LDH) activity and adenosine triphosphate (ATP) synthesis were measured in the osteoblast cell line. Furthermore, 11 patients with muscle pain or elevated CPK serum levels received a supplementation of the nutraceutical composition to test whether CPK levels could be downregulated. RESULTS: The analysis in Saos-2 cells showed that the nutraceutical composition upregulates the gene expression of MyoD-1 and downregulates the expression of the cytoplasmic isoform of CPK gene expression (p ≤ 0.05); moreover, it slightly increases ATP amount and decreases LDH activity. Conversely, atorvastatin represses the expression of MyoD-1 gene without significant changing into the expression levels of both cytoplasmic and mitochondrial CPK genes. Moreover, atorvastatin does not increase the ATP amount or increase LDH activity. Remarkable, the nutraceutical composition is able to decrease CPK levels in serum of patients and in some cases improve myalgia symptoms. CONCLUSION: The nutraceutical composition decreases CPK levels both in vitro and in vivo, suggesting that it might be useful to management of nonneurological myalgia symptoms.


Assuntos
Creatina Quinase/análise , Creatina Quinase/sangue , Suplementos Nutricionais , Osteoblastos/enzimologia , Trifosfato de Adenosina/análise , Adolescente , Adulto , Idoso , Atorvastatina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Creatina Quinase/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mialgia/enzimologia , Proteína MyoD/genética , RNA Mensageiro/análise
14.
Rheumatol Int ; 34(5): 711-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23595570

RESUMO

Osteoarthritis (OA) is a multifactorial degenerative pathology, whose progression is exacerbated by pro-inflammatory cytokines signaling. Among the changes triggered in chondrocytes during inflammation, modified expression of tiny epigenetic regulators as microRNAs was shown having deleterious implications for articular cartilage. Aim of the present study was to identify differentially expressed microRNAs in human OA cartilage and to determine their relevance to pathological progression. An OA model based on inflammatory stimulation of a chondrocytic human cell line was used to analyze microRNAs deregulation, and results revealed miR-149 severely down-regulated by IL1ß and TNFα. Real-time PCR analysis of miR-149 was exerted also in human primary chondrocytes isolated from cartilage of OA donors and postmortem from subjects with no known history of OA, confirming down-regulation in osteoarthritis. Moving on a functional study, miR-149 regulatory effect on tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1ß) and interleukin 6 (IL6) 3'UTRs was evaluated by luciferase assays, and chondrocytes production of TNFα upon miR-149 transfection was measured by enzyme-linked immuno sorbent assay. We found that miR-149 is down-regulated in OA chondrocytes, and this decrease seems to be correlated to increased expression of pro-inflammatory cytokines such as TNFα, IL1ß and IL6. OA is a multifactorial disease and we think that our results give new insights for understanding the complex mechanisms of osteoarthritic pathogenesis.


Assuntos
Condrócitos/metabolismo , Mediadores da Inflamação/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular , Condrócitos/imunologia , Condrócitos/patologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
J Funct Biomater ; 15(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921535

RESUMO

Over the last decades, a variety of biomaterials, ranging from synthetic products to autologous and heterologous grafts, have been recommended to conserve and regenerate bone tissue after tooth extraction. We conducted a biochemical study on ground extracted teeth that aimed to evaluate the osteoinductive and osteoconductive potential of dentin by assessing the releases of bone morphogenetic protein (BMP-2), osteocalcin (OC) and osteonectin (ON) over time (24 h, 10 days and 28 days). Twenty-six patients, who required the extraction of nonrestorable teeth, were enrolled in the study according to the inclusion criteria, as follows: thirteen young patients 18 to 49 years of age (UNDER 50), and thirteen patients of 50 to 70 years (OVER 50); a total of twenty-six teeth were extracted, ground and analyzed by enzyme-linked immunosorbent assays (ELISA). All ground teeth released BMP-2, OC and ON at each time point; no differences were observed between the UNDER-50 and OVER-50 patients. The results of the study support the use of autologous dentin as osteoinductive material for bone regeneration procedures, irrespective of patients' ages.

16.
Polymers (Basel) ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337316

RESUMO

The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.

17.
Rheumatol Int ; 33(9): 2399-403, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22451022

RESUMO

Osteoarthritis (OA) is one of the most common degenerative joint disease for which there is no cure. It is treated mainly with non-steroidal anti-inflammatory drugs to control the symptoms and some supplements, such as glucosamine and chondroitin sulphate in order to obtain structure-modifying effects. Aim of this study is to investigate the effects of L-carnitine, a molecule with a role in cellular energy metabolism, on extracellular matrix synthesis in human primary chondrocytes (HPCs). Dose-dependent effect of L-carnitine on cartilage matrix production, cell proliferation and ATP synthesis was examined by incubating HPCs with various amounts of molecule in monolayer (2D) and in hydromatrix scaffold (3D). L-Carnitine affected extracellular matrix synthesis in 3D in a dose-dependent manner; moreover, L-carnitine was very effective to stimulate cell proliferation and to induce ATP synthesis, mainly in 3D culture condition. In conclusion, L-carnitine enhances cartilage matrix glycosaminoglycan component production and cell proliferation, suggesting that this molecule could be useful in the treatment of pathologies where extracellular matrix is degraded, such as OA. To our knowledge, this is the first study where the effects of L-carnitine are evaluated in HPCs.


Assuntos
Carnitina/farmacologia , Condrócitos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Osteoartrite/tratamento farmacológico , Trifosfato de Adenosina/biossíntese , Idoso , Carnitina/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/metabolismo , Relação Dose-Resposta a Droga , Glicosaminoglicanos/biossíntese , Humanos , Pessoa de Meia-Idade
18.
Bioengineering (Basel) ; 10(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36978734

RESUMO

Nanomedicine can represent a new strategy to treat several types of diseases such as those with inflammatory aetiology. Through this strategy, it is possible to obtain nanoparticles with controlled shape, size, and eventually surface charge. Moreover, the use of molecules in nanoform may allow more effective delivery into the diseased cells and tissues, reducing toxicity and side effects of the used compounds. The aim of the present manuscript was the evaluation of the effects of N-acetylglucosamine in nanoform (GlcNAc NP) in an in vitro model of osteoarthritis (OA). Human primary chondrocytes were treated with Tumor Necrosis Factor (TNF)-α to simulate a low-grade inflammation and then treated with both GlcNAc and GlcNAc NP, in order to find the lowest concentrations able to counteract the inflammatory state of the cells and ensure a chondroprotective action. The findings showed that GlcNAc NP was able to decrease the pro-inflammatory mediators, IL-6 and IL-8, which are among the main effectors of inflammation; moreover, the nanoparticles downregulated the production of metalloprotease enzymes. GlcNAc NP was effective at a very low concentration compared to GlcNAc in its native form. Furthermore, GlcNAc NP stimulated an increase in collagen type II synthesis. In conclusion, the GlcNAc in nanoform showed better performance than GlcNAc, at concentrations lower than those reached in the joints after oral administration to patients of 1.5 g/die of glucosamine.

19.
Nutrients ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501129

RESUMO

Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.


Assuntos
Fármacos Antiobesidade , Obesidade , Humanos , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Sobrepeso/terapia , Estilo de Vida , Suplementos Nutricionais
20.
Pharmaceutics ; 14(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057053

RESUMO

Polylactides (PLAs) are a class of polymers that are very appealing in biomedical applications due to their degradability in nontoxic products, tunable structural, and mechanical properties. However, they have some drawbacks related to their high hydrophobicity, lack of functional groups able to graft bioactive molecules, and solubility in unsafe solvents. To circumvent these shortcomings, porous scaffolds for tissue engineering were prepared by vigorously mixing a solution of isotactic and atactic PLA in nontoxic ethyl acetate at 70 °C with a water solution of choline taurinate. The partial aminolysis of the polymer ester bonds by taurine -NH2 brought about the formation of PLA oligomers with surfactant activity that stabilized the water-in-oil emulsion. Upon drying, a negligible shrinking occurred, and mechanically stable porous scaffolds were obtained. By varying the polymer composition and choline taurinate concentration, it was possible to modulate the pore dimensions (30-50 µm) and mechanical properties (Young's moduli: 1-6 MPa) of the samples. Furthermore, the grafted choline taurinate made the surface of the PLA films hydrophilic, as observed by contact angle measurements (advancing contact angle: 76°; receding contact angle: 40°-13°). The preparation method was very simple because it was based on a one-pot mild reaction that did not require an additional purification step, as all the employed chemicals were nontoxic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA