Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arch Microbiol ; 205(7): 272, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391548

RESUMO

In the COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), face masks have become a very important safety measure against the main route of transmission of the virus: droplets and aerosols. Concerns that masks contaminated with SARS-CoV-2 infectious particles could be a risk for self-contamination have emerged early in the pandemic as well as solutions to mitigate this risk. The coating of masks with sodium chloride, an antiviral and non-hazardous to health chemical, could be an option for reusable masks. To assess the antiviral properties of salt coatings deposited onto common fabrics by spraying and dipping, the present study established an in vitro bioassay using three-dimensional airway epithelial cell cultures and SARS-CoV-2 virus. Virus particles were given directly on salt-coated material, collected, and added to the cell cultures. Infectious virus particles were measured by plaque forming unit assay and in parallel viral genome copies were quantified over time. Relative to noncoated material, the sodium chloride coating significantly reduced virus replication, confirming the effectiveness of the method to prevent fomite contamination with SARS-CoV-2. In addition, the lung epithelia bioassay proved to be suitable for future evaluation of novel antiviral coatings.


Assuntos
COVID-19 , Cloreto de Sódio , Humanos , Cloreto de Sódio/farmacologia , SARS-CoV-2 , Pandemias , COVID-19/prevenção & controle , Antivirais/farmacologia
2.
Chem Res Toxicol ; 33(2): 505-514, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31909610

RESUMO

Chemical and physical characterization of transported evolving aerosols in an in vitro system is complex. The challenges include appropriate sampling sensitivity, measurement capabilities, and performing online measurements of constituents in the flowing aerosol during exposure. We assessed the performance of single-photon ionization mass spectrometry in measuring aerosol properties within an in vitro aerosol exposure system. The sampling efficiency of the instrument was studied under three protocols to capture the evolving aerosol process inside the exposure system, and it was evaluated using computational fluid dynamics modeling. The changes in the aerosol as dilution is applied show not only a reduction in concentration of the traced substances but also selective sampling due to evolution of the aerosol and (gas/liquid) phase partitioning of the substances forming the aerosol or a change in the aerosol properties. These effects have potentially a direct impact on the delivered dose, as aerosol deposition is dependent on particle size. Dilution affects the chemical concentration of the substances as well as the interconnected physical properties of the aerosol; therefore, the experimental design of in vitro studies should not only report the dilution flow rates but also details of the applied dilution protocol. This adds a layer of complexity to the design and comparison of studies. We also discuss the potential and limitations of single-photon ionization mass spectrometry as a tool in in vitro monitoring of aerosols.


Assuntos
Aerossóis/administração & dosagem , Aerossóis/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Fótons , Espectrometria de Massas , Tamanho da Partícula
3.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494692

RESUMO

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Assuntos
Aerossóis/toxicidade , Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Adenilato Quinase/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Proteoma/metabolismo , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos
4.
Altern Lab Anim ; 45(3): 117-158, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28816053

RESUMO

In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide.


Assuntos
Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos , Testes de Toxicidade/métodos , Aerossóis , Animais , Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Humanos , Técnicas In Vitro , Especificidade da Espécie , Estados Unidos , United States Food and Drug Administration
5.
Arch Toxicol ; 90(7): 1541-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27165416

RESUMO

Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Doenças Respiratórias/induzido quimicamente , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/química , Animais , Dano ao DNA , Humanos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/química , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Propriedades de Superfície , Emissões de Veículos/análise
6.
Anal Bioanal Chem ; 407(20): 5977-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880869

RESUMO

Metal-containing fuel additives catalyzing soot combustion in diesel particle filters are used in a widespread manner, and with the growing popularity of diesel vehicles, their application is expected to increase in the near future. Detailed investigation into how such additives affect exhaust toxicity is therefore necessary and has to be performed before epidemiological evidence points towards adverse effects of their application. The present study investigates how the addition of an iron-based fuel additive (Satacen®3, 40 ppm Fe) to low-sulfur diesel affects the in vitro cytotoxic, oxidative, (pro-)inflammatory, and mutagenic activity of the exhaust of a passenger car operated under constant, low-load conditions by exposing a three-dimensional model of the human airway epithelium to complete exhaust at the air-liquid interface. We could show that the use of the iron catalyst without and with filter technology has positive as well as negative effects on exhaust toxicity compared to exhaust with no additives: it decreases the oxidative and, compared to a non-catalyzed diesel particle filter, the mutagenic potential of diesel exhaust, but increases (pro-)inflammatory effects. The presence of a diesel particle filter also influences the impact of Satacen®3 on exhaust toxicity, and the proper choice of the filter type to be used is of importance with regards to exhaust toxicity. Figure ᅟ.


Assuntos
Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Ferro/química , Pulmão/citologia , Pulmão/efeitos dos fármacos , Emissões de Veículos/toxicidade , Filtros de Ar , Catálise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Testes de Mutagenicidade , Mutagênicos/análise , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Enxofre/química , Emissões de Veículos/análise
7.
Environ Sci Technol ; 48(9): 5237-44, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24697289

RESUMO

With the growing number of new exhaust after-treatment systems, fuels and fuel additives for internal combustion engines, efficient and reliable methods for detecting exhaust genotoxicity and mutagenicity are needed to avoid the widespread application of technologies with undesirable effects toward public health. In a commonly used approach, organic extracts of particulates rather than complete exhaust is used for genotoxicity/mutagenicity assessment, which may reduce the reliability of the results. In the present study, we assessed the mutagenicity and the genotoxicity of complete diesel exhaust compared to an organic exhaust particle extract from the same diesel exhaust in a bacterial and a eukaryotic system, that is, a complex human lung cell model. Both, complete exhaust and organic extract were found to act mutagenic/genotoxic, but the amplitudes of the effects differed considerably. Furthermore, our data indicate that the nature of the mutagenicity may not be identical for complete exhaust and particle extracts. Because in addition, differences between the responses of the different biological systems were found, we suggest that a comprehensive assessment of exhaust toxicity is preferably performed with complete exhaust and with biological systems representative for the organisms and organs of interest (i.e., human lungs) and not only with the Ames test.


Assuntos
Mutagênicos/toxicidade , Material Particulado , Emissões de Veículos/toxicidade , Dano ao DNA , Perfilação da Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Testes de Mutagenicidade , Reprodutibilidade dos Testes , Salmonella typhimurium/genética
8.
J Am Soc Mass Spectrom ; 33(11): 2147-2155, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36218284

RESUMO

Inhalation as a route for administering drugs and dietary supplements has garnered significant attention over the past decade. We performed real-time analyses of aerosols using secondary electrospray ionization (SESI) technology interfaced with high-resolution mass spectrometry (HRMS), primarily developed for exhaled breath analysis with the goal to detect the main aerosol constituents. Several commercially available inhalation devices containing caffeine, melatonin, cannabidiol, and vitamin B12 were tested. Chemical characterization of the aerosols produced by these devices enabled detection of the main constituents and screening for potential contaminants, byproducts, and impurities in the aerosol. In addition, a programmable syringe pump was connected to the SESI-HRMS system to monitor aerosolized active pharmaceutical ingredients (APIs) such as chloroquine, hydroxychloroquine, and azithromycin. This setup allowed us to detect caffeine, melatonin, hydroxychloroquine, chloroquine, and cannabidiol in the produced aerosols. Azithromycin and vitamin B12 in the aerosols could not be detected; however, our instrument setup enabled the detection of vitamin B12 breakdown products that were generated during the aerosolization process. Positive control was realized by liquid chromatography-HRMS analyses. The compounds detected in the aerosol were confirmed by exact mass measurements of the protonated and/or deprotonated species, as well as their respective collision-induced dissociation tandem mass spectra. These results reveal the potential wide application of this technology for the real-time monitoring of aerosolized active pharmaceutical ingredients that can be administered through the inhalation route.


Assuntos
Canabidiol , Melatonina , Espectrometria de Massas por Ionização por Electrospray/métodos , Cafeína , Azitromicina , Hidroxicloroquina , Aerossóis/análise , Vitamina B 12
9.
Sci Rep ; 12(1): 17041, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220878

RESUMO

During the coronavirus disease (COVID-19) pandemic, wearing face masks in public spaces became mandatory in most countries. The risk of self-contamination when handling face masks, which was one of the earliest concerns, can be mitigated by adding antiviral coatings to the masks. In the present study, we evaluated the antiviral effectiveness of sodium chloride deposited on a fabric suitable for the manufacturing of reusable cloth masks using techniques adapted to the home environment. We tested eight coating conditions, involving both spraying and dipping methods and three salt dilutions. Influenza A H3N2 virus particles were incubated directly on the salt-coated materials, collected, and added to human 3D airway epithelial cultures. Live virus replication in the epithelia was quantified over time in collected apical washes. Relative to the non-coated material, salt deposits at or above 4.3 mg/cm2 markedly reduced viral replication. However, even for larger quantities of salt, the effectiveness of the coating remained dependent on the crystal size and distribution, which in turn depended on the coating technique. These findings confirm the suitability of salt coating as antiviral protection on cloth masks, but also emphasize that particular attention should be paid to the coating protocol when developing consumer solutions.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , COVID-19/prevenção & controle , Humanos , Técnicas In Vitro , Vírus da Influenza A Subtipo H3N2 , Máscaras , Cloreto de Sódio/farmacologia
11.
Toxicol In Vitro ; 67: 104909, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32512146

RESUMO

The dose of inhaled materials delivered to the respiratory tract is to a large extent a function of the kinetics of particle deposition and gas dissolution on or in the airway and lung epithelia, and therefore of the structural and functional properties of the respiratory tract. In vitro aerosol exposure systems commonly do not simulate these properties, which may result in the delivery of non-realistic, non-human-relevant doses of inhalable test substances to the in vitro biological test systems. We developed a new-generation in vitro aerosol exposure system, the InHALES, that can, like the human respiratory tract, actively breathe, operate medical inhalers, or take puffs from tobacco products. Due to its structural and functional similarity to the human respiratory tract, the system is expected to deliver human-relevant doses of inhalable materials to cell cultures representing respiratory tract epithelia. We here describe the proof of concept of the InHALES with respect to aerosol delivery and compatibility with oral, bronchial, and alveolar cell cultures. The results indicate that the system structure and function translate into complex patterns of test atmosphere delivery that, with increasing system complexity, may closely mimic the patterns observable in the human respiratory tract.


Assuntos
Aerossóis/administração & dosagem , Técnicas de Cultura de Células , Pulmão , Modelos Biológicos , Administração por Inalação , Ar , Humanos
12.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30835057

RESUMO

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Assuntos
Fumar Cigarros/metabolismo , Vapor do Cigarro Eletrônico/metabolismo , Exposição Ambiental/análise , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatologia
13.
Toxicol In Vitro ; 52: 384-398, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003980

RESUMO

In vitro aerosol exposure of epithelial cells grown at the air-liquid interface is an experimental methodology widely used in respiratory toxicology. The exposure depends to a large part on the physicochemical properties of individual aerosol constituents, as they determine the transfer kinetics from the aerosol into the cells. We characterized the transfer of 70 cigarette smoke constituents from the smoke into aqueous samples exposed in the Vitrocell® 24/48 aerosol exposure system. The amounts of these compounds in the applied smoke were determined by trapping whole smoke in N,N-dimethylformamide and then compared with their amounts in smoke-exposed, phosphate-buffered saline, yielding compound specific delivery efficiencies. Delivery efficiencies of different smoke constituents differed by up to five orders of magnitude, which indicates that the composition of the applied smoke is not necessarily representative for the delivered smoke. Therefore, dose metrics for in vitro exposure experiments should, if possible, be based on delivered and not applied doses. A comparison to literature on in vivo smoke retention in the respiratory tract indicated that the same applies for smoke retention in the respiratory tract.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco , Testes de Toxicidade/métodos , Aerossóis , Fumaça/análise
14.
Toxicol In Vitro ; 42: 263-272, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28457873

RESUMO

BACKGROUND: The Vitrocell® 24/48 is an advanced aerosol exposure system that has been widely used and characterized for exposure studies of cigarette smoke, but not for exposure to liquid aerosols with a low gas-vapor phase content such as the ones generated by electronic cigarettes. An experimental system characterization for this specific application was therefore performed. METHODS: Glycerol model aerosols of different particle size distributions, produced by a condensation monodisperse aerosol generator, were used for exposing small volumes of phosphate-buffered saline in the Vitrocell® 24/48. Disodium fluorescein, added as a tracer in the aerosol, allowed the exact aerosol mass deposition to be quantified fluorometrically. RESULTS: The aerosol mass delivery efficiency within the system showed variations in the range of ±25%. Aerosol dilution was not fully reflected in aerosol delivery, the achieved aerosol delivery should therefore be determined experimentally. Quartz crystal microbalances underestimated the deposition of liquid aerosols. Unequal delivery of particles of different sizes was detectable, although this effect is unlikely to be relevant under applied experimental conditions. CONCLUSIONS: The Vitrocell® 24/48 aerosol exposure system can be used for exposures to liquid aerosols, such as those generated by electronic cigarettes. However, our results indicate that, compared with aerosol studies of cigarettes, a higher variability is to be expected.


Assuntos
Aerossóis/administração & dosagem , Testes de Toxicidade/instrumentação , Aerossóis/química , Desenho de Equipamento , Glicerol/administração & dosagem , Glicerol/química , Tamanho da Partícula
15.
Toxicol In Vitro ; 38: 150-158, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27664316

RESUMO

Knowledge of how an in vitro aerosol exposure system delivers a test aerosols to the biological test system is among the most crucial prerequisites for the interpretation of exposure experiments and relies on detailed exposure system characterization. Although various methods for this purpose exist, many of them are time consuming, require extensive instrumentation, or offer only limited ability to assess the performance of the system under experimental settings. We present the development and evaluation of a new, highly robust and sensitive fluorometry-based method for assessing the particle size specific delivery of liquid aerosols. Glycerol aerosols of different mean particle sizes and narrow size distributions, carrying the fluorophore disodium fluorescein, were generated in a condensation monodisperse aerosol generator. Their detailed characterization confirmed their stability and the robustness and reproducibility of their generation. Test exposures under relevant experimental settings in the Vitrocell® 24/48 aerosol exposure system further confirmed their feasibility for simulating exposures and the high sensitivity of the method. Potential applications of the presented method range from the experimental confirmation of computationally simulated particle dynamics, over the characterization of in vitro aerosol exposure systems, to the detailed description of aerosol delivery in test systems of high complexity.


Assuntos
Aerossóis/administração & dosagem , Aerossóis/química , Fluorometria/métodos , Fluoresceína/química , Fluorescência , Corantes Fluorescentes/química , Glicerol/química , Tamanho da Partícula , Testes de Toxicidade/métodos
16.
FEBS Lett ; 586(3): 211-6, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22212719

RESUMO

Regulation of tetrapyrrole biosynthesis in higher plants has been attributed to negative feedback control. Two effectors of feedback inhibition have been identified, heme and the FLU protein. Inhibition by heme implicates the Fe-branch via regulation of the initial step of tetrapyrrole synthesis. In the present work a FLU-containing chloroplast membrane complex was identified, that besides FLU comprises the four enzymes catalyzing the final steps of chlorophyll synthesis. The results support the notion that FLU links chlorophyll synthesis and the target of feedback control, glutamyl-tRNA reductase, thereby allowing also the Mg-branch to control the initial step of tetrapyrrole synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biossíntese , Retroalimentação Fisiológica , Magnésio/metabolismo , Aldeído Oxirredutases/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Biocatálise , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo
17.
Toxicol Lett ; 214(2): 218-25, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22960666

RESUMO

The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20µg/ml (low dose) or for 6h at 60µg/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-α were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure.


Assuntos
Cério/farmacologia , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Emissões de Veículos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Microscopia de Fluorescência , Estresse Oxidativo/fisiologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA