Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Sci Food Agric ; 102(8): 3359-3369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34820866

RESUMO

BACKGROUND: High oxygen treatment has been proven to be effective in fresh-cut white mushroom preservation, however, the preservation effect and possible mechanisms in high oxygen controlled atmosphere pretreatment (HOCAP) on wounding stress are incompletely understood. RESULTS: In this study, based on the time chosen of HOCAP research, whole white mushrooms treated with 3 h HOCAP (80% O2 + 20% CO2 ) and the wounding resistant responses of their slices were mainly investigated through phenylpropane pathway, reactive oxygen species (ROS) scavenging system, and ascorbate-glutathione (AsA-GSH) cycle. Results showed that 3 h HOCAP can induce the production of hydrogen peroxide (H2 O2 ) and superoxide anion (O2 -• ) in the early stage, as well as the NADPH oxidase activity. Enzymes and endogenous antioxidants involved in ROS scavenging were enhanced by HOCAP during the whole storage. Besides, HOCAP maintained high level of phenylalanine ammonia-lyase (PAL) activity, enhanced the content of total phenolic and lignin, accelerated the AsA-GSH cycle. CONCLUSION: The results demonstrated that HOCAP induced defense responses by increasing the ROS in the early stage which stimulated the activities of ROS scavenging enzymes, along with the capability of increasing for wounding stress defense and resistance. This study provides a theoretical pretreatment technology for fresh-cut white mushroom preservation. © 2021 Society of Chemical Industry.


Assuntos
Agaricus , Oxigênio , Agaricus/química , Atmosfera , Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
2.
Bioprocess Biosyst Eng ; 40(9): 1419-1425, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28717833

RESUMO

In this study an impedance aptasensor was designed for sensitive, selective, and fast detection of tetracycline (TET) based on an interdigital array microelectrode (IDAM). The IDAM was integrated with impedance detection to miniaturize the conventional electrodes, enhance the sensitivity, shorten the detection time, and minimize interfering effects of non-target analytes in the solution. Due to their excellent conductivity, good biocompatibility, the multi-walled carbon nanotubes (MWCNTs) were used to modify the IDAM to immobilize TET aptamer effectively. The proposed aptasensor produced a sensitive impedance change which was characterized by the electrochemical impedance spectroscopy (EIS). With the addition of TET, the formation of TET-aptamer complex on the surface of MWCNTs modified electrode resulted in an increase of electron transfer resistance (R et). The change of R et depends on the concentration of TET, which is applied for the quantification of TET. A wide linear range was obtained from 10-9 to 10-3 M. The linear regression equation was y(ΔR) = 21.310 × x(LogC) (M) + 217.25. It was successfully applied to detect TET in real milk samples.


Assuntos
Espectroscopia Dielétrica/métodos , Nanotubos de Carbono/química , Tetraciclina/análise , Espectroscopia Dielétrica/instrumentação , Microeletrodos
3.
Bioprocess Biosyst Eng ; 38(2): 315-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25147124

RESUMO

A sensitive amperometric acetylcholinesterase (AChE) biosensor was developed based on the nanocomposite of multi-walled carbon nanotubes (MWCNTs), tin oxide (SnO2) nanoparticles and chitosan (CHIT). Acetylcholinesterase (AChE) and Nafion were immobilized onto the nanocomposite film to prepare AChE biosensor for pesticide residues detection. The morphologies and electrochemistry properties of the surface modification were investigated using cyclic voltammetry, differential pulse voltammetry, and scanning electron microscopy, respectively. Compared with individual MWCNTs-CHIT, SnO2-CHIT and bare gold electrode, this nanocomposite showed the most obvious electrochemical signal in the presence of [Fe(CN)6](3-/4-) as a redox couple. Incorporating MWCNTs and SnO2 into 0.2% CHIT solution can promote electron transfer, enhance the electrochemical response, and improve the microarchitecture of the electrode surface. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Under optimized conditions, the AChE biosensor exhibited a wide linear range from 0.05 to 1.0 × 10(5 )µg/L and with a detection limit for chlorpyrifos was 0.05 µg/L. Based on the inhibition of pesticides on the AChE activity, using chlorpyrifos as model pesticide, the proposed biosensor exhibited a wide range, low detection limit, good reproducibility, and high stability. Using cabbages, lettuces, leeks, and pakchois as model samples, acceptable recovery of 98.7-105.2% was obtained. The proposed method was proven to be a feasible quantitative method for chlorpyrifos analysis, which may open a new door ultrasensitive detection of chlorpyrifos residues in vegetables and fruits.


Assuntos
Acetilcolinesterase/química , Técnicas Biossensoriais/instrumentação , Quitosana/química , Clorpirifos/análise , Nanocompostos/química , Compostos de Estanho/química , Acetilcolinesterase/análise , Clorpirifos/química , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/química , Condutometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Microeletrodos , Nanocompostos/ultraestrutura , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Bioprocess Biosyst Eng ; 38(2): 307-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25119301

RESUMO

An electrochemical immunosensor based on interdigitated array microelectrodes (IDAMs) was developed for sensitive, specific and rapid detection of chlorpyrifos. Anti-chlorpyrifos monoclonal antibodies were orientedly immobilized onto the gold microelectrode surface through protein A. Chlorpyrifos were then captured by the immobilized antibody, resulting in an impedance change in the IDAMs surface. Electrochemical impedance spectroscopy was used in conjunction with the fabricated sensor to detect chlorpyrifos. Under optimum conditions, the impedance value change of chlorpyrifos was proportional to its concentrations in the range of 10(0)-10(5) ng/mL. The detection limit was found to be 0.014 ng/mL for chlorpyrifos. The proposed chlorpyrifos immunosensor could be used as a screening method in pesticide determination for the analysis of environmental, agricultural and pharmaceutical samples due to its rapidity, sensitivity and low cost.


Assuntos
Clorpirifos/análise , Condutometria/instrumentação , Imunoensaio/instrumentação , Análise em Microsséries/instrumentação , Microeletrodos , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais/instrumentação , Clorpirifos/imunologia , Desenho de Equipamento , Análise de Falha de Equipamento , Inseticidas/análise , Inseticidas/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Bioprocess Biosyst Eng ; 38(8): 1455-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801002

RESUMO

A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 µg/mL and from 150 to 2 µg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.


Assuntos
Hidróxido de Alumínio/química , Técnicas Biossensoriais/métodos , Ouro/química , Grafite/química , Hidróxidos/química , Nanocompostos/química , Nanosferas/química , Níquel/química , Técnicas Eletroquímicas/métodos
6.
Analyst ; 139(1): 299-308, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24256770

RESUMO

An electrochemical aptasensor was developed for the detection of kanamycin based on the synergistic contributions of chitosan-gold nanoparticles (CS-AuNPs), graphene-gold nanoparticles (GR-AuNPs) and multi-walled carbon nanotubes-cobalt phthalocyanine (MWCNTs-CoPc) nanocomposites. The aptasensor was prepared by sequentially dripping CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites onto a gold electrode (GE) surface. During the above process, these nanomaterials showed a remarkable synergistic effect towards the aptasensor. CS-AuNPs, GR-AuNPs and MWCNTs-CoPc as the nanocomposites mediator improved electron relay during the entire electron transfer process and the aptasensor response speed. The electrochemical properties of the modified processes were characterized by cyclic voltammetry (CV). The morphologies of the nanocomposites were characterized by scanning electron microscopy (SEM). The experimental conditions such as the concentration of the aptamer, the time, temperature and the pH were optimized. Based on the synergistic contributions of CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites, the proposed aptasensor displayed high sensitivity, high specificity, a low detection limit (5.8 × 10(-9) M) (S/N = 3) and excellent stability. It was successfully applied to the detection of kanamycin in real milk spiked samples.


Assuntos
Quitosana/química , Indóis/química , Canamicina/análise , Nanopartículas Metálicas/química , Nanocompostos/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Animais , Aptâmeros de Nucleotídeos/química , Bovinos , Ouro/química
7.
Bioprocess Biosyst Eng ; 37(10): 1929-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24770986

RESUMO

In this study, an acetylcholinesterase (AChE) biosensor with superior accuracy and sensitivity was successfully developed based on interdigitated array microelectrodes (IAMs). IAMs have a series of parallel microband electrodes with alternating microbands connected together. Chitosan was used as the enzyme immobilization material, and AChE was used as the model enzyme for carbaryl detection to fabricate AChE biosensor. Electrochemical impedance spectroscopy was used in conjunction with the fabricated biosensor to detect pesticide residues. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited a wide range, low detection limit, and high stability. Moreover, the biosensor can also be used as a new promising tool for pesticide residue analysis.


Assuntos
Acetilcolinesterase/metabolismo , Técnicas Biossensoriais , Carbaril/análise , Inibidores da Colinesterase/análise , Microeletrodos , Limite de Detecção , Espectrofotometria Ultravioleta
8.
Int J Biol Macromol ; 271(Pt 1): 132353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763250

RESUMO

Traditional active packaging materials are easily affected by the environment, resulting in their inability to release active substances in specified quantities at specified times and locations. In this study, MCM-41 was used as a thymol (THY) carrier and added to the potato starch (PS) matrix to design an intelligent release active packaging film based on storage microenvironment. MCM-41 encapsulation improved thermal stability of THY. THY-MCM-41 addition significantly improved the tensile strength (TS, 7.18 MPa) of the film (P < 0.05) and endowed the film excellent gas and water barrier protection. THY release was responsive to temperature and relative humidity (RH), and the First-order model better explained the THY release pattern (R2 > 0.980). The THY-MCM-41/PS film exhibited long-term antibacterial effect during 10-day storage due to the sustained release of THY. Additionally, strawberries packaged in the THY-MCM-41/PS film exhibited the best sensory characteristics during 5-day storage (25 °C and 50 % RH). Overall, the present THY-MCM-41/PS film provides a novel alternative for the sustained release of active substances in order to achieve the excellent preservation of goods such as fruits and vegetables.


Assuntos
Embalagem de Alimentos , Solanum tuberosum , Amido , Timol , Timol/química , Solanum tuberosum/química , Amido/química , Embalagem de Alimentos/métodos , Dióxido de Silício/química , Modelos Teóricos , Resistência à Tração , Temperatura , Umidade , Antibacterianos/química , Antibacterianos/farmacologia
9.
Int J Biol Macromol ; 261(Pt 2): 129611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266840

RESUMO

Based on the key factor of spontaneous modified atmosphere packaging (MAP)-gas permeability, a spontaneous MAP film was created for the preservation of Agaricus bisporus by delaying the senescence of white mushrooms. Compared with other mixed films, hydroxypropyl methylcellulose (HPMC)/pueraria (P)-2 showed better mechanical properties, barrier properties and thermal stability energy. Applying the HPMC/P-2 film for preserving white mushrooms can spontaneously adjust the internal gas environment. Moreover, the O2 concentration in the package remained stable at 1-2 %, and the CO2 concentration was between 8 % and 14 %. The film can effectively reduce the respiration rate of white mushrooms, inhibit enzymatic browning, maintain their good color and texture, and delay their aging. In conclusion, the HPMC/P-2 film can be used not only for fruit and vegetables preservation but also provide theoretical basis for sustainable food packaging.


Assuntos
Agaricus , Pueraria , Derivados da Hipromelose , Embalagem de Alimentos , Atmosfera
10.
Food Chem ; 441: 138334, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185051

RESUMO

The optical properties [absorption coefficient (µa) and reduced scattering coefficient (µs')] and internal quality [firmness (FI), moisture content (MC), and soluble solids content (SSC)] of stored potatoes at 25 °C were determined, along with ultrastructure observation. Potato tissue ultrastructure changed significantly with storage time, exhibiting enhanced scattering properties and a monotonic increase in µs'. The µa spectra showed significant correlations with MC and SSC, while the µs' spectra were more strongly correlated with FI. The competitive adaptive reweighted sampling (CARS) algorithm improved the prediction accuracy for partial least squares regression (PLSR) and support vector regression (SVR) models. The best predictions were 1st-Derivative-µs'-FI-PLSR (RP = 0.897, RMSEP = 0.036 N, RPD = 2.262), SG-µa -MC-SVR (RP = 0.886, RMSEP = 0.438 %, RPD = 2.157), and Raw-µa -SSC-SVR (RP = 0.873, RMSEP = 0.137 %, RPD = 2.050). These results demonstrate the potential for predicting internal quality using potato's optical properties.


Assuntos
Solanum tuberosum , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Algoritmos
11.
Int J Biol Macromol ; 272(Pt 2): 132934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862320

RESUMO

Guar gum (GG) as a polymer biopolymer is widely used in the field of bio-based packaging. However, its poor mechanical properties, barrier properties and high viscosity greatly hinder its use as an effective packaging material. Therefore, this study introduced CPTES to improve the mechanical (16.58-27.39 MPa) and tensile properties (26.80 %-30.67 %). The FTIR and XRD results indicated a strong interaction between the biofilm fractions modified by CPTES, CPTES bound to the hydroxyl groups on GG and formed a dense polysiloxane network through adsorption and grafting. OM and AFM reflect a denser and flatter film structure on the surface of the G30 film, which has the best film formation. Based on this, the pH of the solution was further adjusted to reach an alkaline environment, disrupting the intermolecular binding through electrostatic repulsion. The rheological behavior indicates that the viscosity and viscoelasticity of film solution gradually decrease with the increase in pH. OM and AFM results show that the G30/8 film has the best compact properties, while the nonporous compact film structure further improves the mechanical, barrierand and thermodynamic properties of the film. Accordingly, the findings of this study had a certain value for regulating the low viscoelasticity of GG emulsion and enhancing the stability of film formation.


Assuntos
Galactanos , Mananas , Gomas Vegetais , Gomas Vegetais/química , Galactanos/química , Mananas/química , Concentração de Íons de Hidrogênio , Viscosidade , Silanos/química , Reologia , Resistência à Tração
12.
Int J Biol Macromol ; 269(Pt 2): 131970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697413

RESUMO

This study investigated the properties of chitosan/zein/tea polyphenols (C/Z/T) films and analyzed the release kinetics of tea polyphenols (TP) in various food simulants to enhance the sustainability and functionality of food packaging. The results revealed that TP addition enhanced the hydrophilicity, opacity and mechanical properties of film, and improved the compatibility between film matrix. 1.5 % TP film showed the lowest lightness (76.4) and the highest chroma (29.1), while 2 % TP film had the highest hue angle (1.5). However, the excessive TP (above 1 % concentration) led to a decrease in compatibility and mechanical properties of film. The TP concentration (2 %) resulted in the highest swelling degree in aqueous (750.6 %), alcoholic (451.1 %), and fatty (6.4 %) food simulants. The cumulative release of TP decreased to 16.32 %, 47.13 %, and 5.87 % with the increase of TP load in the aqueous, alcoholic, and fatty food simulants, respectively. The Peleg model best described TP release kinetics. The 2 % TP-loaded film showed the highest DPPH (97.13 %) and ABTS (97.86 %) free radical scavenging activity. The results showed TP release influenced by many factors and obeyed Fick's law of diffusion. This study offered valuable insights and theoretical support for the practical application of active films.


Assuntos
Quitosana , Embalagem de Alimentos , Polifenóis , Chá , Zeína , Quitosana/química , Polifenóis/química , Chá/química , Cinética , Zeína/química , Preparações de Ação Retardada , Antioxidantes/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
13.
Int J Biol Macromol ; 258(Pt 2): 128985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154359

RESUMO

This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.


Assuntos
Óleos Voláteis , Origanum , Carboximetilcelulose Sódica/química , Proteínas de Soja/química , Embalagem de Alimentos/métodos , Óleos Voláteis/química , Cápsulas , Sódio
14.
Bioprocess Biosyst Eng ; 36(3): 273-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22829062

RESUMO

In this work, a highly sensitive acetylcholinesterase (AChE) inhibition-based amperometric biosensor has been developed. Firstly, a glassy carbon electrode (GCE) was modified with chitosan (Chits). Then, hollow gold nanospheres (HGNs) were absorbed onto the surface of chitosan based on the strong affinity through electrostatic adsorption. After that, L-cysteine (L-cys) was assembled on HGNs through Au-S bond. The hollow gold nanospheres were prepared by using Co nanoparticles as sacrificial templates and characterized by scanning electron microscopy, transmission electron microscopy and ultraviolet spectra, respectively. Finally, AChE was immobilized with covalent binding via -COOH groups of L-cysteine onto the modified GCE. The AChE biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1-150 and 0.1-200 µg L(-1) for chlorpyrifos and carbofuran, respectively, the detection limits were 0.06 µg L(-1) for chlorpyrifos and 0.08 µg L(-1) for carbofuran. Moreover, the biosensor exhibited a good stability and reproducibility and was suitable for trace detection of pesticide residues in vegetables and fruits.


Assuntos
Acetilcolinesterase/metabolismo , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanosferas/química , Carbofurano/análise , Clorpirifos/análise , Cisteína/química , Eletroquímica , Ferricianetos/química , Concentração de Íons de Hidrogênio , Oxirredução , Praguicidas/análise
15.
Sensors (Basel) ; 13(4): 5286-301, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23604029

RESUMO

In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs) and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au) nanocomposites were modified onto the surface of a glass carbon electrode (GCE) via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab) and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD), ultraviolet and visible absorption spectroscopy (UV-vis) and scanning electron microscopy (SEM), respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3). The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.


Assuntos
Anticorpos/metabolismo , Técnicas Biossensoriais/instrumentação , Carbofurano/análise , Técnicas Eletroquímicas/instrumentação , Ouro/química , Grafite/química , Nanotubos de Carbono/química , Polietilenoimina/química , Frutas/química , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Nanotubos de Carbono/ultraestrutura , Reprodutibilidade dos Testes , Verduras/química , Difração de Raios X
16.
J Biotechnol ; 374: 114-121, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579845

RESUMO

As a renewable carbon source produced from organic wastes by acidogenic fermentation, volatile fatty acids (VFAs) are important intermediates in chemical and biological fields and beneficial to resource recovery and carbon neutrality. Maximizing VFA production by some strategies without additional chemicals is critical to increasing economic and environmental benefits. In this study, the effects of initial organic load (OL) on the performance of VFA production, variations of intermediate metabolites, and the thermogravimetric properties of potato peel waste (PPW) during batch acidogenic fermentation were studied. The results showed that the concentration of VFAs increased with the increase of initial OL, while the VFA yield decreased with the increase of initial OL. When the initial OL was in the range of 28.4 g VS/L-91.3 g VS/L, the fermentation type of PPW was butyric acid fermentation. The highest butyric acid proportion of 61.3% was achieved with the initial OL of 71.5 g VS/L. With the increase of initial OL, the proportion of acetic acid and the utilization rate of protein in the PPW decreased. VFAs were produced from proteins and carbohydrates in the early stage and mainly produced from carbohydrates in the later stage. The production efficiency of VFA was relatively high with the initial OL of 71.5 g VS/L, because more easily-biodegradable compounds were solubilized. The results showed that suitably increased initial OL could accelerate acidogenesis, reduce hydrolysis time, and increase the proportion of butyric acid. The findings in this work suggest that PPW is a promising feedstock for butyric acid biosynthesis and appropriate initial OL is beneficial to VFA production.


Assuntos
Solanum tuberosum , Fermentação , Reatores Biológicos , Ácidos Graxos Voláteis , Ácidos , Carboidratos , Ácido Butírico , Concentração de Íons de Hidrogênio , Esgotos
17.
Anal Methods ; 15(31): 3854-3862, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37496451

RESUMO

The quantitative determination of the soluble solid content (SSC) of potatoes using NIR spectroscopy is useful for predicting the internal and external quality of potato products, especially fried products. In this study, the effect of peel on the partial least squares regression (PLSR) quantitative prediction of potato SSC was investigated by transmission and reflection. The results show that the variable sorting for normalization (VSN) pre-processing method improved model accuracy. Additive multiplicative scattering effects and intensity drift interference of the peels were reduced. The model accuracy reached a correlation coefficient of prediction (RP) of 0.85. The selection algorithm using variable combination population analysis and iterative retention of information variables (VCPA-IRIV) demonstrated that peel increases unnecessary information. When the effect of irrelevant variables was reduced, the results reached RP = 0.88 and the root mean square error of prediction (RMSEP) = 0.25 in the transmission mode was close to that of the full-wavelength peeled PLSR model (RP = 0.89 and RMSEP = 0.25). This indicates that the use of the combined algorithm (VSN-VCPA-IRIV) reduces the effect of the peel and enables samples with a peel to still be predicted accurately in the full-wavelength model. It also improves detection efficiency through the extraction of the necessary variables and optimizes the stability and accuracy of the model.

18.
Food Chem ; 405(Pt A): 134856, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368098

RESUMO

pH-responsive carboxymethyl chitosan (CC)/sodium alginate (SA)/carvacrol (CA) hydrogels were prepared using CC and SA as wall materials. The formation of hydrogels is attributed to electrostatic interactions and hydrogen bonding. The thermostability of the hydrogels was improved with increasing CC content. The swelling degree of the hydrogels increased with increasing pH of the buffer solution. The mechanism of CA release was mainly controlled by Fickian diffusion. Notably, the release rate of CA was positively correlated with temperature and environmental pH, thus the on-demand release of CA can be achieved through pH stimulation. The hydrogels showed good storage stability via determination of antioxidant and antibacterial activities. Furthermore, the C4S1-CA hydrogels (CC/SA blends with dry mass ratios of 4:1, w/w) have good biocompatibility and biosafety. The CC/SA/CA hydrogels provide a unique route for environmentally-responsive preservatives and present new avenues for precise release and intelligent preservation.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/química , Quitosana/química , Cinética , Concentração de Íons de Hidrogênio , Alginatos/química , Portadores de Fármacos/química
19.
Chemosphere ; 335: 139021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247680

RESUMO

A systematic investigation of coupling dielectric barrier discharge (DBD) plasma and different ultraviolet bands (UVA, UVB, UVC, and VUV) was constructed for antibiotic-contaminant wastewater treatment. Compared with DBD, UV, or other combined DBD/UV systems, the DBD/VUV/UVC system exhibited excellent degradation and mineralization efficiencies for oxytetracycline (OTC), achieving 93.2% removal rate (reaction rate constant 1.05 min-1) and higher decarbonization efficiency (mineralization rate 0.47 mg C min-1) within 2.5 min treatment. The radical quenching tests revealed that HO⋅, O2·-, and 1O2 were all involved in the decomposition of OTC in the DBD/VUV/UVC system, among which O2·- played a dominant role. Possible degradation pathways of OTC in the DBD/VUV/UVC process were proposed using density functional theory and detected intermediates. Four indexes were used to assess the toxicity of OTC and its degraded intermediates. The inorganic anions and HA slightly reduced the degradation efficiency of the DBD/VUV/UVC system. This research provides new ideas to broaden the application of plasma and alleviate the water environment crisis.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Vácuo , Poluentes Químicos da Água/toxicidade , Raios Ultravioleta , Antibacterianos , Água
20.
Food Chem ; 429: 136901, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487395

RESUMO

In order to improve the effectiveness of the active packaging, we aimed to develop an active packaging film with unidirectional sustained release, high barrier protection, and seamless attachment between the layers. An active film based on glutenin/tamarind gum loaded with the binary microemulsion of melatonin/pummelo essential oil (G/T-M-E) with sustained release and combination effects of internal and external layers was prepared. The outer barrier layer exerted an excellent protective barrier effect after adding (3-chloropropyl) triethoxysilane, which effectively reduced external interference and the ineffective diffusion of active substances in the inner layer. The effective attachment of melatonin and essential oil layer in the G/T-M-E film enhanced antioxidation, microorganism inhibition, and free-radical-scavenging properties, which effectively delayed the senescence of post-harvest white mushrooms. Furthermore, the G/T-M-E exhibited excellent tensile strength, barrier capacity, and load-bearing strength, which had a potential, positive effect on food preservation. Therefore, this film is highly recommended for packaging purposes.


Assuntos
Agaricus , Melatonina , Óleos Voláteis , Tamarindus , Óleos Voláteis/farmacologia , Melatonina/farmacologia , Embalagem de Alimentos , Preparações de Ação Retardada/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA