Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.464
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799037

RESUMO

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Assuntos
Candida albicans/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Candida albicans/patogenicidade , Reações Cruzadas/imunologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Humanos , Imunidade , Imunidade Heteróloga/imunologia , Células Th17/fisiologia
2.
Cell ; 167(4): 1067-1078.e16, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773482

RESUMO

FOXP3+ regulatory T cells (Tregs) maintain tolerance against self-antigens and innocuous environmental antigens. However, it is still unknown whether Treg-mediated tolerance is antigen specific and how Treg specificity contributes to the selective loss of tolerance, as observed in human immunopathologies such as allergies. Here, we used antigen-reactive T cell enrichment to identify antigen-specific human Tregs. We demonstrate dominant Treg-mediated tolerance against particulate aeroallergens, such as pollen, house dust mites, and fungal spores. Surprisingly, we found no evidence of functional impairment of Treg responses in allergic donors. Rather, major allergenic proteins, known to rapidly dissociate from inhaled allergenic particles, have a generally reduced capability to generate Treg responses. Most strikingly, in individual allergic donors, Th2 cells and Tregs always target disparate proteins. Thus, our data highlight the importance of Treg antigen-specificity for tolerance in humans and identify antigen-specific escape from Treg control as an important mechanism enabling antigen-specific loss of tolerance in human allergy.


Assuntos
Hipersensibilidade/imunologia , Imunidade nas Mucosas , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologia , Alérgenos/imunologia , Autoantígenos/imunologia , Humanos , Memória Imunológica
3.
Semin Immunol ; 66: 101728, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841146

RESUMO

The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.


Assuntos
COVID-19 , Micoses , Humanos , Pulmão , Fungos , Imunidade Inata
4.
Semin Immunol ; 67: 101753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060806

RESUMO

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Assuntos
Fusarium , Ceratite , Humanos , Fungos , Córnea/microbiologia , Córnea/patologia , Ceratite/microbiologia , Ceratite/patologia , Fusarium/fisiologia , Neutrófilos
5.
Proc Natl Acad Sci U S A ; 120(35): e2305049120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603767

RESUMO

The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Complexo do Signalossomo COP9/genética , Catálise , Núcleo Celular , Cromatografia de Afinidade , Ubiquitina-Proteína Ligases
6.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
7.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294218

RESUMO

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Micoses/microbiologia , Farmacorresistência Fúngica
8.
Trends Biochem Sci ; 46(9): 708-717, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33903007

RESUMO

Elevator-type transporters are a group of proteins translocating nutrients and metabolites across cell membranes. Despite structural and functional differences, elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator), which includes the substrate binding site, along a rigid scaffold domain, stably anchored in the plasma membrane. How substrate specificity is determined in elevator transporters remains elusive. Here, I discuss how a recent report on the sliding elevator mechanism, seen under the context of genetic analysis of a prototype fungal transporter, sheds light on how specificity might be genetically modified. I propose that flexible specificity alterations might occur by 'loosening' of the sliding mechanism from tight coupling to substrate binding.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Transporte Biológico , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Especificidade por Substrato
9.
Mol Microbiol ; 121(1): 18-25, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961029

RESUMO

Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.


Assuntos
Aflatoxinas , Policetídeos , Metabolismo Secundário/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Genoma Fúngico , Policetídeos/metabolismo , Família Multigênica , Aflatoxinas/metabolismo , Genes Fúngicos
10.
Mol Microbiol ; 121(5): 927-939, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38396382

RESUMO

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/genética , Genoma Fúngico/genética , Recombinação Genética , Genômica , Metabolômica , Genótipo , Fenótipo , Família Multigênica , Variação Genética , Indóis/metabolismo , Meiose/genética
11.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855177

RESUMO

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Assuntos
Asma , Resistina , Animais , Camundongos , Asma/metabolismo , Células Epiteliais/metabolismo , Pulmão , Muco/metabolismo , Resistina/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
12.
Mol Cell Proteomics ; 22(2): 100490, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566904

RESUMO

Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Lisina/metabolismo , Proteômica , Aflatoxinas/metabolismo , Processamento de Proteína Pós-Traducional
13.
Trends Biochem Sci ; 45(9): 728-730, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32622750

RESUMO

Aspergillus fumigatus is a deadly fungal pathogen in immunocompromised patients. A report by Gonçalves et al. reveals that melanin, a secondary metabolite present at the surface of infecting fungal spores, induces glycolysis in macrophages to promote inflammatory responses. This opens a window for the development of innovative host-directed antifungal therapies.


Assuntos
Antifúngicos , Melaninas , Aspergillus fumigatus , Humanos , Macrófagos , Esporos Fúngicos
14.
J Biol Chem ; 299(8): 105003, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399977

RESUMO

Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on ß-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These ß-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the ß-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes ß-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes ß-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to ß-ketoadipate.


Assuntos
Aspergillus niger , Hidroxibenzoatos , Adipatos , Aspergillus niger/genética , Bactérias/metabolismo
15.
Infect Immun ; 92(2): e0038023, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168666

RESUMO

Macrophages act as a first line of defense against pathogens. Against Aspergillus fumigatus, a fungus with pathogenic potential in immunocompromised patients, macrophages can phagocytose fungal spores and inhibit spore germination to prevent the development of tissue-invasive hyphae. However, the cellular pathways that macrophages use to accomplish these tasks and any roles macrophages have later in infection against invasive forms of fungi are still not fully known. Rac-family Rho GTPases are signaling hubs for multiple cellular functions in leukocytes, including cell migration, phagocytosis, reactive oxygen species (ROS) generation, and transcriptional activation. We therefore aimed to further characterize the function of macrophages against A. fumigatus in an in vivo vertebrate infection model by live imaging of the macrophage behavior in A. fumigatus-infected rac2 mutant zebrafish larvae. While Rac2-deficient zebrafish larvae are susceptible to A. fumigatus infection, Rac2 deficiency does not impair macrophage migration to the infection site, interaction with and phagocytosis of spores, spore trafficking to acidified compartments, or spore killing. However, we reveal a role for Rac2 in macrophage-mediated inhibition of spore germination and control of invasive hyphae. Re-expression of Rac2 under a macrophage-specific promoter rescues the survival of A. fumigatus-infected rac2 mutant larvae through increased control of germination and hyphal growth. Altogether, we describe a new role for macrophages against extracellular hyphal growth of A. fumigatus and report that the function of the Rac2 Rho GTPase in macrophages is required for this function.


Assuntos
Aspergilose , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/microbiologia , GTP Fosfo-Hidrolases , Macrófagos/microbiologia , Fagocitose , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Esporos Fúngicos , Proteínas rac de Ligação ao GTP/genética , Proteínas de Peixe-Zebra/genética
16.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38501672

RESUMO

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Assuntos
Aspergillus fumigatus , Ceratite , Compostos de Fenilureia , Humanos , Animais , Camundongos , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipase C gama/metabolismo , Ceratite/microbiologia , Prognóstico , Camundongos Endogâmicos C57BL
17.
Proteins ; 92(2): 236-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818702

RESUMO

The subsequent biochemical and structural investigations of the purified recombinant α-l-rhamnosidase from Aspergillus oryzae expressed in Pichia pastoris, designated as rAoRhaA, were performed. The specific activity of the rAoRhaA wild-type was higher toward hesperidin and narirutin, where the l-rhamnose residue was α-1,6-linked to ß-d-glucoside, than toward neohesperidin and naringin with an α-1,2-linkage to ß-d-glucoside. However, no activity was detected toward quercitrin, myricitrin, and epimedin C. rAoRhaA kinetic analysis indicated that Km values for neohesperidin, naringin, and rutin were lower compared to those for hesperidin and narirutin. kcat values for hesperidin and narirutin were higher than those for neohesperidin, naringin, and rutin. High catalytic efficiency (kcat /Km ) toward hesperidin and narirutin was a result of a considerably high kcat value, while Km values for hesperidin and narirutin were higher than those for naringin, neohesperidin, and rutin. The crystal structure of rAoRhaA revealed that the catalytic domain was represented by an (α/α)6 -barrel with the active site located in a deep cleft and two ß-sheet domains were also present in the N- and C-terminal sites of the catalytic domain. Additionally, five asparagine-attached N-acetylglucosamine molecules were observed. The catalytic residues of AoRhaA were suggested to be Asp254 and Glu524, and their catalytic roles were confirmed by mutational studies of D254N and E524Q variants, which lost their activity completely. Notably, three aspartic acids (Asp117, Asp249, and Asp261) located at the catalytic pocket were replaced with asparagine. D117N variant showed reduced activity. D249N and D261N variants activities drastically decreased.


Assuntos
Aspergillus oryzae , Hesperidina , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Especificidade por Substrato , Cinética , Asparagina , Glicosídeo Hidrolases/química , Rutina , Glucosídeos
18.
BMC Genomics ; 25(1): 603, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886660

RESUMO

BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.


Assuntos
Aspergillus , Família Multigênica , Aspergillus/genética , Aspergillus/metabolismo , Regiões Árticas , Humanos , Produtos Biológicos/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Linhagem Celular Tumoral , Vias Biossintéticas/genética , Metabolismo Secundário/genética , Genoma Fúngico
19.
Emerg Infect Dis ; 30(8)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935978

RESUMO

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation of selected ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.

20.
Curr Issues Mol Biol ; 46(6): 5712-5723, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921013

RESUMO

Aspergillus fumigatus is commonly found in the airway and is associated with airway inflammatory diseases. Zinc oxide (ZO) is known to be an essential microelement that facilitates fungal survival, growth, and proliferation. This study aimed to investigate the impact of ZO on A. fumigatus-induced fungal sinusitis in rabbits. Twenty-eight New Zealand white rabbits were divided into four groups for this study. Group 1 (6 sides) was treated with intramaxillary phosphate buffer saline (PBS) served as the negative control, Group 2 (6 sides) received intramaxillary PBS and ZO, Group 3 (8 sides) was treated with intramaxillary A. fumigatus alone, and Group 4 (8 sides) treated with intramaxillary A. fumigatus with ZO. After 4 and 12 weeks, sinus mucosal cytokine and transcription factor expressions were determined. A histological analysis was performed to determine inflammatory cell infiltration, number of secretory cells, and mucosal thickness. Fungal biofilm formation was determined using confocal laser microscopy. The intramaxillary instillation of A. fumigatus conidia led to an increase in protein and mRNA expression of interleukin (IL)-1ß and IL-8 in the maxillary sinus mucosa. They were associated with mitogen-activated protein kinase and activator protein-1. Furthermore, intramaxillary instillation of fungal conidia resulted in significant enhancement of inflammatory cell infiltration, epithelial thickening, and fungal biofilm formation. However, intramaxillary ZO did not have a significant impact on A. fumigatus-induced cytokine protein and mRNA expression, and inflammatory cell infiltration and epithelial thickness in sinonasal mucosa. While intramaxillary instillation of A. fumigatus increased mucosal inflammation, cytokine production, and biofilm formation, the intramaxillary application of ZO did not have a significant influence on inflammation in the maxillary sinus mucosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA