Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Food Microbiol ; 103: 103964, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082081

RESUMO

Yeast metabolism depends on growing conditions, which include the chemical composition of the medium, temperature and growth time. Historically, fatty acid profiles have been used to differentiate yeasts growing in liquid media. The present study determined the fatty acids of Saccharomyces species in colonies. Using the same method, the effect of that the number of colonies and growth time had on solid media allowed us to determine the metabolomic profiles of the cells. Our results showed that the lipid and metabolomic profiles of the cells evolved as the colony grew. Interestingly, some strains of Saccharomyces cerevisiae have been were differentiated using the fatty acid profile of a colony; concretely indeed EC1118 and QA23 strains were separated from ICV-K1 and BM4x4. The synthesis of saturated fatty acids was greater than that of unsaturated fatty acids during the first two days of cell growth on a solid medium compared to a liquid medium. Unsaturated fatty acids subsequently became predominant. Finally, this methodology could be useful for carrying out physiological studies in a complete or defined solid growth medium allowing the supplementation of compounds, which inhibit or activate the growth of yeasts.


Assuntos
Saccharomyces , Vinho , Diferenciação Celular , Fermentação , Lipídeos , Metaboloma
2.
Food Microbiol ; 97: 103763, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653514

RESUMO

A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source: ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.


Assuntos
Nitrogênio/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Etanol/metabolismo , Fermentação , Glicerol/metabolismo , Odorantes/análise , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise
3.
Food Microbiol ; 90: 103484, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336360

RESUMO

In this study, we presented the first metabolome time course analysis performed among a set of S. uvarum, S. kudriavzevii and S. cerevisiae strains under winemaking conditions. Extracellular and intracellular metabolites, as well as physiological parameters of yeast cells, were monitored along the process to find evidence of different metabolic strategies among species to perform alcoholic fermentation. A thorough inspection of time trends revealed several differences in utilization or accumulation of fermentation by-products. We confirmed the ability of S. uvarum and S. kudriavzevii strains to produce higher amounts of glycerol, succinate or some fusel alcohols and their corresponding esters. We also reported differences in the yields of less common fermentative by-products involved in redox homeostasis, namely 2,3 butanediol and erythritol. 2,3 butanediol yield was higher in must ferment with cryophilic strains and erythritol, a pentose phosphate pathway derivative, was particularly overproduced by S. uvarum strains. Contrary to S. cerevisiae, a singular production-consumption rate of acetate was also observed in S. uvarum and S. kudriavzevii fermentations. Since acetate is a precursor for acetyl-CoA production which is involved in the biosynthesis of membrane lipids, cryophilc strains might take advantage of extracellular acetate to remodel cell membrane as ethanol content increased during fermentation.


Assuntos
Fermentação , Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Acetatos/metabolismo , Álcoois/metabolismo , Eritritol/metabolismo , Metaboloma , Oxirredução , Prolina/metabolismo , Saccharomyces/classificação , Fatores de Tempo
4.
Yeast ; 35(1): 173-187, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048749

RESUMO

The inheritance of mitochondrial DNA (mtDNA) in yeast hybrids is heteroplasmic, turning into homoplasmic after few cell cycles. Mitotype restoration is reported to be biparental and random. This study shows that mitotype restoration follows fixed schemata. We created isogenic, interspecific Saccharomyces cerevisiae × Saccharomyces uvarum hybrids through direct mating and analysed their mating frequency and mitotype. The mating frequency increased for most crosses in staggered mating. Mitotyping revealed that breeding lines with the same parental strain of S. cerevisiae and different parental strains of S. uvarum give rise to the same mitotype. According to our results, we postulate that the inheritance of mtDNA is dominated by one parental strain and that the superior mitotype is specific to each breeding line. Technological tests showed typical hybrid heterosis. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Saccharomyces/genética , Vinho/microbiologia , DNA Fúngico/genética , DNA Mitocondrial/genética , Fermentação , Indústria Alimentícia , Genes Fúngicos Tipo Acasalamento , Genótipo , Hibridização Genética
5.
Yeast ; 31(12): 449-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242436

RESUMO

Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Saccharomyces/classificação , Saccharomyces/genética
6.
Int J Food Microbiol ; 416: 110681, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38490108

RESUMO

In recent years, the presence of molecules derived from aromatic amino acids in wines has been increasingly demonstrated to have a significant influence on wine quality and stability. In addition, interactions between different yeast species have been observed to influence these final properties. In this study, a screening of 81 yeast strains from different environments was carried out to establish a consortium that would promote the improvement of indolic compound levels in wine. Two strains, Saccharomyces uvarum and Saccharomyces eubayanus, with robust fermentative capacity were selected to be combined with a Saccharomyces cerevisiae strain with a predisposition towards the production of indolic compounds. Fermentation dynamics were studied in pure cultures, co-inoculations and sequential inoculations, analysing strain interactions and end-of-fermentation characteristics. Fermentations showing significant interactions were further analyzed for the resulting indolic compounds and aroma profile, with the aim of observing potential interactions and synergies resulting from the combination of different strains in the final wine. Sequential inoculation of S. cerevisiae after S. uvarum or S. eubayanus was observed to increase indolic compound levels, particularly serotonin and 3-indoleacetic acid. This study is the first to demonstrate how the formation of microbial consortia can serve as a useful strategy to enhance compounds with interesting properties in wine, paving the way for future studies and combinations.


Assuntos
Saccharomyces , Vinho , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Triptofano/análise , Triptofano/metabolismo , Fermentação , Saccharomyces/metabolismo
7.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448691

RESUMO

During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethanol, which also contained metabisulfite, a preservative that is used during wine fermentation as it converts to sulfite. After the adaptation process under these selected stressful environmental conditions, the tolerance of the adapted strain (H14A7-etoh) to sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite compared to the original H14A7 strain, whereas ethanol tolerance improvement was slight. However, a trade-off in the adapted hybrid was found, as it had a lower capacity to ferment glucose and fructose in comparison with H14A7. Hybrid genomes are almost always unstable, and different signals of adaptation on H14A7-etoh genome were detected. Each subgenome present in the adapted strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae chromosome III and in S. uvarum chromosome VII-XVI, which had been duplicated. Moreover, S. uvarum chromosome I was not present in H14A7-etoh and a loss of heterozygosity (LOH) event arose on S. cerevisiae chromosome I. RNA-sequencing analysis showed differential gene expression between H14A7-etoh and H14A7, which can be easily correlated with the signals of adaptation that were found on the H14A7-etoh genome. Finally, we report alterations in the lipid composition of the membrane, consistent with conserved tolerance mechanisms.


Assuntos
Genoma Fúngico , Saccharomyces/genética , Saccharomyces/metabolismo , Vinho/microbiologia , Adaptação Fisiológica , Etanol/análise , Etanol/metabolismo , Fermentação , Saccharomyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Vinho/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-32195231

RESUMO

In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. Genomic sequencing analysis showed that the artificial spore-derivative hybrid is an allotriploid, which is very common among natural hybrids. Its genome contains one genome copy from the S. uvarum parental genome and two heterozygous copies of the S. cerevisiae parental genome, with the exception of a monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is located. This genome constitution supports that the original hybrid from which the spore was obtained likely originated by a rare-mating event between a mating-competent S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-derivative hybrid subgenome is regulating different processes during the fermentation, in which each parental species has demonstrated to be more efficient. Therefore, interactions between the two subgenomes in the spore-derivative hybrid improve those differential species-specific adaptations to the wine fermentation environments, already present in the parental species.

9.
Int J Food Microbiol ; 310: 108331, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31479829

RESUMO

Lack of the prezygotic barrier in the Saccharomyces genus facilitates the construction of artificial interspecific hybrids among different Saccharomyces species. Hybrids that maintain the interesting features of parental strains have been applied in industry for many beneficial purposes. Two of the most important problems faced by wine makers is nitrogen deficiency in grape must and low-temperature fermentation. In our study, hybrids were constructed by using selected low nitrogen-demanding cryotolerant S. eubayanus, S. uvarum strains and S. cerevisiae. The fermentation capacity of the hybrid strains was tested under four conditions by combining two temperatures, 12 °C and 28 °C, and two nitrogen concentrations, 60 mg/L and 300 mg/L. The hybrid strains obtained combined characters of both parental strains and conferred better fermentation rates under low-temperature or low-nitrogen conditions. The hybrid strains also produced larger amounts of acetate esters and higher alcohols, which increase aroma intensity and complexity in wine. Nitrogen sources were more rapidly consumed by the hybrid strains, which allows greater competition ability under nitrogen-deficiency conditions. Therefore, the interspecific hybridisation between low nitrogen-demanding cryotolerant strains and S. cerevisiae is a potential solution for low-temperature or low-nitrogen fermentations.


Assuntos
Temperatura Baixa , Fermentação , Microbiologia de Alimentos/métodos , Hibridização Genética , Nitrogênio , Saccharomyces , Vinho/microbiologia , Ácido Acético/metabolismo , Álcoois/metabolismo , Biotecnologia , Ésteres/metabolismo , Nitrogênio/metabolismo , Odorantes , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/metabolismo , Vitis/microbiologia
10.
Front Microbiol ; 9: 96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467731

RESUMO

Being a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum shows great potential regarding the future of the wine industry. The sulfite tolerance of most S. uvarum strains is poor, however. This is a major flaw that limits its utility in the wine industry. In S. cerevisiae, FZF1 plays a positive role in the transcription of SSU1, which encodes a sulfite efflux transport protein that is critical for sulfite tolerance. Although FZF1 has previously been shown to play a role in sulfite tolerance in S. uvarum, there is little information about its action mechanism. To assess the function of FZF1, two over-expression vectors that contained different FZF1 genes, and one FZF1 silencing vector, were constructed and introduced into a sulfite-tolerant S. uvarum strain using electroporation. In addition, an FZF1-deletion strain was constructed. Both of the FZF1-over-expressing strains showed an elevated tolerance to sulfite, and the FZF1-deletion strain showed the opposite effect. Repression of FZF1 transcription failed, however, presumably due to the lack of alleles of DCR1 and AGO. The qRT-PCR analysis was used to examine changes in transcription in the strains. Surprisingly, neither over-expressing strain promoted SSU1 transcription, although MET4 and HAL4 transcripts significantly increased in both sulfite-tolerance increased strains. We conclude that FZF1 plays a different role in the sulfite tolerance of S. uvarum compared to its role in S. cerevisiae.

11.
Adv Food Nutr Res ; 85: 177-210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29860974

RESUMO

The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.


Assuntos
Tecnologia de Alimentos , Vinho/análise , Vinho/microbiologia , Leveduras/fisiologia , Mudança Climática , Fermentação , Frutas , Vitis , Leveduras/classificação
12.
Elife ; 62017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28537556

RESUMO

The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization.


Assuntos
Cromossomos Fúngicos/metabolismo , Diploide , Saccharomyces cerevisiae/genética
13.
Int J Food Microbiol ; 178: 1-6, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24667312

RESUMO

Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation.


Assuntos
Ácidos/metabolismo , Candida/metabolismo , Fermentação , Saccharomyces/metabolismo , Vinho , Anaerobiose , Compostos Orgânicos/metabolismo , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA