Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32210356

RESUMO

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Talidomida/análogos & derivados , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Rotenona/farmacologia , Talidomida/farmacologia , Ubiquitinação/efeitos dos fármacos
2.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466216

RESUMO

Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , Atrofia Muscular Espinal/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Humanos , Mitocôndrias/patologia , Atrofia Muscular Espinal/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Biogênese de Organelas , Doença de Parkinson/tratamento farmacológico
3.
Genes Genomics ; 45(3): 261-270, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609747

RESUMO

Mitochondria are organelles that serve as a central hub for physiological processes in eukaryotes, including production of ATP, regulation of calcium dependent signaling, generation of ROS, and regulation of apoptosis. Cancer cells undergo metabolic reprogramming in an effort to support their increasing requirements for cell survival, growth, and proliferation, and mitochondria have primary roles in these processes. Because of their central function in survival of cancer cells and drug resistance, mitochondria are an important target in cancer therapy and many drugs targeting mitochondria that target the TCA cycle, apoptosis, metabolic pathway, and generation of ROS have been developed. Continued use of mitochondrial-targeting drugs can lead to resistance due to development of new somatic mutations. Use of drugs is limited due to these mutations, which have been detected in mitochondrial proteins. In this review, we will focus on genetic mutations in mitochondrial target proteins and their function in induction of drug-resistance.


Assuntos
Mitocôndrias , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Resistencia a Medicamentos Antineoplásicos , Apoptose , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
4.
Redox Biol ; 36: 101665, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32795938

RESUMO

Parkinson's disease (PD) and cancer share common mutations in mitochondrial proteins: Parkin and PINK1. The overlapping of genes involved in PD and cancer implies that the two diseases might share a common pathogenic mechanism. There are other compelling rationales for a mechanistic link between these diseases. Mitochondria and autophagy/mitophagy are emerging as therapeutic targets in PD and cancer: Ongoing research in our laboratories has shown that, when administered early, mitochondria-targeted agents afford neuroprotection in preclinical mice models of PD. Also, we discovered that mitochondria-targeted drugs inhibit tumor cell proliferation. We propose that mitochondrial targeting stimulates conservation of cellular energy critical for neuronal cell survival, whereas the energy conservation mechanism inhibits proliferation of cancer cells by depriving the energy necessary for cancer cell growth. We propose a promising drug repurposing strategy involving mitochondria-targeted drugs synthesized from naturally occurring molecules and FDA-approved drugs that are relatively nontoxic in both PD and cancer. These compounds have been shown to induce various cellular signaling pathways for autophagy/mitophagy, anti-inflammatory, and immunomodulatory effects that are implicated as therapeutic mechanisms in PD and cancer.


Assuntos
Neoplasias , Doença de Parkinson , Preparações Farmacêuticas , Animais , Reposicionamento de Medicamentos , Camundongos , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/genética , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA