Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047259

RESUMO

The fermentation process has been widely used to improve plant-based foods' nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-α)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNFα-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.


Assuntos
Antioxidantes , Alimentos Fermentados , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fermentação , Triticum/metabolismo , Anti-Hipertensivos/metabolismo , Ácido Gálico/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Rutina/farmacologia , Rutina/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Alimentos Fermentados/análise , Pão/análise , Farinha/análise
2.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838898

RESUMO

Rye flour is used as the main ingredient of sourdough bread, which has technological and gastronomic benefits and increased nutritional value. The transformations observed during fermentation and baking may enable the conversion or degradation of rye dietary fiber carbohydrates built mainly of arabinoxylans, fructans, and ß-glucans. This study aimed to determine the dynamics of the changes in the contents of complex carbohydrates in sourdoughs inoculated with potential probiotic microorganisms as well as the polysaccharide composition of the resulting bread. Sourdoughs were inoculated with the potential probiotic microorganisms Saccharomyces boulardii, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Bacillus coagulans, and spontaneous fermentation was performed as a control. Samples of the sourdoughs after 24 and 48 h of fermentation and of bread obtained with these sourdoughs were analyzed for the content of individual dietary fiber components. The present study demonstrated that the treatments applied contributed to an increased total content of arabinoxylans in the breads, and the inoculation of the sourdoughs with the potential probiotic strains improved their solubility in water. The use of the S.boulardii strain may seem prospective as it allowed for the greatest reduction in fructans in the rye bread. Rye sourdough bread is an attractive source of dietary fiber and can be modified for different nutritional needs.


Assuntos
Lactobacillaceae , Secale , Fermentação , Estudos Prospectivos , Lactobacillaceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fibras na Dieta/metabolismo , Pão , Farinha
3.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299468

RESUMO

Inoculation of sourdough allows the fermentation medium to be dominated by desired microorganisms, which enables determining the kinetics of the conversion of chemical compounds by individual microorganisms. This knowledge may allow the design of functional food products with health features dedicated to consumers with special needs. The aim of the study was to assess the dynamics of transformations of fermentable oligosaccharide, disaccharide, monosaccharide and polyol (FODMAP) compounds from wheat flour as well as their antioxidant activity during inoculated and spontaneous sourdough fermentation. The FODMAP content in grain products was determined by the fructan content with negligible amounts of sugars and polyols. To produce a low-FODMAP cereal product, the fermentation time is essential. The 72 h fermentation time of L. plantarum-inoculated sourdough reduced the FODMAP content by 91%. The sourdough fermentation time of at least 72 h also positively influenced the content of polyphenols and antioxidant activity, regardless of the type of fermentation. The inoculation of both L. plantarum and L. casei contributed to a similar degree to the reduction in FODMAP in sourdough compared to spontaneous fermentation.


Assuntos
Antioxidantes/metabolismo , Farinha/análise , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Polímeros/metabolismo , Polifenóis/metabolismo , Triticum/metabolismo , Carboidratos/química , Fermentação , Lactobacillales/crescimento & desenvolvimento , Triticum/microbiologia
4.
World J Microbiol Biotechnol ; 37(5): 88, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881636

RESUMO

In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.


Assuntos
Pão/microbiologia , Frutose/metabolismo , Glucose/metabolismo , Saccharomycetales/fisiologia , Técnicas Bacteriológicas , Fermentação , Lactobacillales/fisiologia , Concentração Osmolar , Saccharomyces cerevisiae/fisiologia , Saccharomycetales/crescimento & desenvolvimento
5.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560366

RESUMO

It is widely recognized that the biological effects of phytochemicals cannot be attributed to the native compounds present in foods but rather to their metabolites endogenously released after intake. Bioavailability depends on bioaccessibility, which is the amount of the food constituent that is released from the matrix in the gastrointestinal tract. The use of chemical extraction to evaluate the content and profile of phytochemicals does not mirror the physiological situation in vivo, and their bioaccessibility should be considered while assessing their nutritional significance in human health. The current study was designed to compare the (poly)phenolic profile and content and antioxidant capacity of whole-grain (WG) cookies using chemical extraction and a more physiological approach based on simulated digestion. Three types of organic WG cookies (made with durum, Italian khorasan, or KAMUT® khorasan wheat) were considered, either fermented by Saccharomyces Cerevisiae or sourdough. Although the flour type and the fermentation process influenced the release of phytochemicals from the cookie matrix, in almost all samples, the simulated digestion appeared the most efficient procedure. Our results indicate that the use of chemical extraction for evaluation of the phytochemicals content and antioxidant capacity of food could lead to underestimation and underline the need for more physiological extraction methods.


Assuntos
Antioxidantes/análise , Farinha/análise , Fenóis/análise , Triticum/química , Grãos Integrais/química , Saccharomyces cerevisiae
6.
J Sci Food Agric ; 98(9): 3501-3512, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29314016

RESUMO

BACKGROUND: Selected ion flow tube-mass spectrometry (SIFT-MS) is a direct-injection mass spectrometric technique that has been introduced recently into the field of food and flavor analysis. It also shows potential for use in the monitoring of food fermentations. Therefore, this study aimed at the online monitoring of different volatile compounds produced during starter culture-initiated liquid sourdough fermentations by SIFT-MS, for which a new workflow was developed. RESULTS: The online monitoring of the volatile sample compounds acetoin and ethyl acetate, diacetyl, and ethanol was made possible during the production of sourdoughs obtained through fermentation with several interesting strains belonging to the species Lactobacillus crustorum, Lactobacillus fermentum, Lactobacillus hilgardii, Lactobacillus nagelii, Lactobacillus sakei, and Gluconobacter oxydans. Acetoin and ethyl acetate could not be distinguished based solely on SIFT-MS data. Diacetyl production was monitored in the case of Lb. crustorum LMG 23699 as a starter culture strain, thereby making the distinction between those volatiles produced in sourdough without extra ingredients added or after the addition of citrate or malate. CONCLUSION: Starter culture-initiated liquid sourdough fermentations were monitored successfully. The volatile compound production of the different starter culture strains tested reflected differences in their metabolism and/or competitiveness in a sourdough matrix. © 2018 Society of Chemical Industry.


Assuntos
Pão/análise , Pão/microbiologia , Fermentação , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Acetatos/análise , Acetoína/análise , Diacetil/análise , Etanol/análise , Manipulação de Alimentos/métodos , Gluconobacter oxydans/metabolismo , Lactobacillus/metabolismo
7.
Br J Nutr ; 117(7): 1001-1012, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28462730

RESUMO

Lowering postprandial glucose and insulin responses may have significant beneficial implications for prevention and treatment of metabolic disorders. Bread is a staple food consumed worldwide in a daily basis, and the use of different baking technologies may modify the glucose and insulin response. The aim of this review was to critically record the human studies examining the application of different bread making processes on postprandial glucose and insulin response to bread. Literature is rich of results which show that the use of sourdough fermentation instead of leavening with Saccharomyces cerevisiae is able to modulate glucose response to bread, whereas evidence regarding its efficacy on lowering postprandial insulin response is less clear. The presence of organic acids is possibly involved, but the exact mechanism of action is still to be confirmed. The reviewed data also revealed that the alteration of other processing conditions (method of cooking, proofing period, partial baking freezing technology) can effectively decrease postprandial glucose response to bread, by influencing physical structure and retrogradation of starch. The development of healthier bread products that benefit postprandial metabolic responses is crucial and suggested baking conditions can be used by the bread industry for the promotion of public health.


Assuntos
Pão/efeitos adversos , Culinária , Medicina Baseada em Evidências , Índice Glicêmico , Pão/análise , Pão/microbiologia , Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Fibras na Dieta/uso terapêutico , Fermentação , Alimentos Congelados/efeitos adversos , Alimentos Congelados/análise , Alimentos Congelados/microbiologia , Humanos , Levilactobacillus brevis/metabolismo , Lactobacillus plantarum/metabolismo , Período Pós-Prandial , Saccharomyces cerevisiae/metabolismo , Amido/efeitos adversos , Amido/análise , Amido/metabolismo , Grãos Integrais/efeitos adversos , Grãos Integrais/química
8.
J Sci Food Agric ; 96(5): 1541-7, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25951136

RESUMO

BACKGROUND: Traits such as bird-, insect- and mould-resistance are the focus in selecting improved sorghum varieties, but this often increases the tannin content, which can negatively affect iron bioavailability. The grain characteristics, nutrient retention, and the fate of iron-binding polyphenols (IBPs) during injera processing, an Ethiopian traditional fermented pancake, were investigated using agriculturally improved tannin-free (TFC) and high-tannin (HTC) sorghum cultivars. RESULTS: The HTC had significantly higher IBP contents than the TFC (P < 0.05). Decortication led to iron (24-27%), calcium (18-43%), IBP (catechol 35-41%, galloyl 35-42%), and tannin (12-35%) losses. Sourdough fermentation reduced the IBP and tannin concentrations in HTC, but had no effect on the IBP concentrations in TFC. The modified injera processing that included pre-soaking resulted in the highest IBP reductions (galloyl 73% and catechol 71%). CONCLUSION: Nutrient retention in HTC and TFC processing was different. Including a pre-soaking step during injera processing of HTC could counter the negative effects of IBP on iron absorption, while benefiting from the agronomic features of HTC.


Assuntos
Manipulação de Alimentos/métodos , Ferro/metabolismo , Fenóis/análise , Sorghum/química , Taninos/análise , Disponibilidade Biológica , Fermentação , Ferro/farmacocinética , Fenóis/metabolismo , Polifenóis/análise , Polifenóis/metabolismo
9.
J Food Sci ; 89(3): 1414-1427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328986

RESUMO

Sourdough fermentation is an ancient leavening method that uses wild yeasts to produce carbon dioxide, contributing to bread rise, and bacteria which produce organic acids. Sourdough starter cultures are known to be diverse in terms of the microorganisms they comprise and while specific genera and species of microorganisms have been identified from starters and associated with specific attributes, overarching relationships between sourdough starter culture microbiomes and bread quality are not well understood. The objective of this study was to characterize differences in the physical and chemical properties of breads produced with sourdough starter cultures with unique microbiomes. Sourdough starter cultures (n = 20) of known microbial populations were used to produce wheat-based dough and bread, which were analyzed for chemical and physical properties then compared to their microbial populations in order to identify relationships between microbial profiles and dough/bread qualities. All samples were also compared to bread produced only with Saccharomyces cerevisiae (baker's yeast). Significant differences among pH, titratable acidity, loaf volume, crumb firmness, crust color, free amino acids, and organic acids were observed when comparing sourdough breads to the yeast-only control (p ≤ 0.05). Furthermore, bacterial diversity of sourdough starter cultures was correlated with lactic acid and free amino acid in the dough and loaf volume and crumb firmness of baked breads. No significant correlations were found between fungal diversity and measured outcomes. These data demonstrate the importance of considering sourdough starter microbiomes as an ingredient in baked goods and they contribute to quality and safety outcomes in bread production. PRACTICAL APPLICATION: Sourdough starter cultures have diverse and dynamic populations of bacteria and yeasts, which contribute to the production of bread products. These populations can influence the physical and chemical properties of sourdough fermentation and final breads. Understanding of the relationship between sourdough starter microbiomes and bread quality parameters can lead to targeted development of sourdough bread products with specific physical and chemical properties.


Assuntos
Microbiota , Fermento Seco , Pão/análise , Triticum/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Bactérias/metabolismo , Aminoácidos/metabolismo
10.
Curr Res Microb Sci ; 6: 100214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38116184

RESUMO

Spontaneous fermentation of Tritordeum flour enhances the nutritional potential of this hybrid cereal. However, the effect of consumption of Tritordeum sourdough bread (SDB) on gut health remains to be elucidated. This study investigated the effect of in vitro digestion and faecal fermentation of SDB compared to that of traditional baker's yeast (BYB) Tritordeum bread. After 24-h anaerobic faecal fermentation, both SDB and BYB (1% w/v) induced an increase in the relative abundances of Bifidobacterium, Megasphaera, Mitsuokella, and Phascolarctobacterium genera compared to baseline, while concentrations of acetate and butyrate were significantly higher at 24 h for SDB compared to those for BYB. Integrity of intestinal epithelium, as assessed through in vitro trans-epithelial electrical resistance (TEER) assay, was slightly increased after incubation with SDB fermentation supernatants, but not after incubation with BYB fermentation supernatants. The SDB stimulated in vitro mucosal immune response by inducing early secretion of inflammatory cytokines, IL-6 and TNF-α, followed by downregulation of the inflammatory trigger through induction of anti-inflammatory IL-10 expression. Overall, our findings suggest that Tritordeum sourdough can modulate gut microbiota fermentation activity and positively impact the gut health.

11.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472817

RESUMO

Millet, a gluten-free cereal, has received attention for its environmental friendliness and higher protein content than other grains. It represents a staple food in many African countries, where fermentation is traditionally used for preserving food products and preparing different cereal-based products. This study aimed to assess the impact of sourdough fermentation on bioactive compounds and antioxidant and anti-inflammatory properties of pearl millet from Burkina Faso. Phenolic compounds were investigated spectrophotometrically and by HPLC-DAD. The antioxidant activity of unfermented (MF) and fermented (FeMF) millet was evaluated in vitro by spectrophotometric and fluorometric assays and ex vivo on oxidized human erythrocytes for hemolysis inhibition. Finally, the potential anti-inflammatory effect of FeMF and MF was evaluated on human adenocarcinoma cell line (HT-29) exposed to TNF-α inflammatory stimulus. Results revealed significantly higher levels of polyphenols, flavonoids, and in vitro antioxidant activity following millet fermentation. Notable differences in phenolic composition between FeMF and MF are observed, with fermentation facilitating the release of bioactive compounds such as gallic acid, quercetin, and rutin. A dose-dependent protection against oxidative hemolysis was observed in both FeMF- and MF-pretreated erythrocytes. Similarly, pretreatment with FeMF significantly reduced the levels of inflammatory markers in TNF-α-treated cells, with effects comparable to those of MF. Fermentation with sourdough represents a simple and low-cost method to improve the bioactive compounds content and in vitro antioxidant activity of millet flour with promising nutraceutical potential.

12.
Foods ; 12(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37835204

RESUMO

This study aimed to assess the impact of bacterial species and fermentation time on wheat bread quality, FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) content, and antioxidant activity of wheat bread, utilizing boosted native sourdough as a novel approach to enhance bread production. The incorporation of lactic acid bacteria strains, i.e., Lacticaseibacillus casei and Lactiplantibacillus plantarum, during 72 h fermentation significantly reduced FODMAP content to less than 0.1 g/100 g of wheat bread. Extending the fermentation time to 72 h notably increased the polyphenol content to 145.35 mg gallic acid (GA) per 100 g in the case of spontaneous fermentation and to 151.11 and 198.73 mg GA/100 g in the case of sourdoughs inoculated with L. casei and L. plantarum, respectively. While the treatment yielded positive effects on FODMAP modulation and antioxidant activity, it is crucial to acknowledge its impact on some organoleptic properties, such as aroma and flavor, which, despite good overall bread quality, have changed as a result of prolonged fermentation time. The study results indicate that choosing specific bacterial species and controlling fermentation time can effectively reduce FODMAPs and boost antioxidants. These findings contribute to the understanding of sourdough-based interventions in bread production, offering insights for the development of healthier and nutritionally improved wheat bread products.

13.
Foods ; 12(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37628124

RESUMO

The roller milling of sorghum and quinoa seeds into flour fractions (coarse, middle, and fine) was investigated, chemically analysed, and applied in the baking of gluten-free sourdough bread. The gap settings were adjusted to 0, 5, 8, and 10 for quinoa, and 3, 5, and 7 for sorghum. The fine fractions reached values of up to about 41% (gap 8) for quinoa and around 20% for sorghum (gap 5). SEM pictographs illustrated the clear separation of each fraction with the chemical analysis showing high contents of protein, TDF (total dietary fibre), and IDF (insoluble dietary fibre) in the coarse fraction. Up to 77% starch content was obtained in the fine fraction with significant amounts of SDF (soluble dietary fibre), which has good health benefits. Increasing the dough moisture up to 90% helped in decreasing the bread crumb firmness, while low Avrami parameters and RVA pasting behaviour indicated a slow bread-staling rate for both sourdough breads.

14.
Foods ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766134

RESUMO

This study investigated the impact of in situ-formed exopolysaccharides (EPS) in red bean (Vigna angularis) sourdough fermented by Weissella confusa QS813 on dough rheo-fermentation properties, bread-making quality and aroma characteristics of red bean sourdough bread. The EPS formed in red bean sourdough and sourdough-induced acidification improved the maximum dough fermentation height, gas retention coefficient and viscoelastic properties of dough. Doughs had a lower increase rate of total SDS-soluble gluten proteins, a low decline in GMP content and similar free sulfhydryl content to wheat dough. Resultantly, breads showed declines in baking loss and hardness, increase in specific volume and lower moisture loss and staling rate after 7 days of storage. Finally, despite a reduction in the total content of aroma compounds, new aroma compounds such as acetic acid and higher contents of 3-methyl-1-butanol and 2,3-butanediol were enriched in red bean sourdough bread. Sourdough acidification probably promoted interaction of EPS with gluten or red bean proteins through bond interactions to form structures which stabilized gluten in dough and increased water-binding ability in red bean sourdough bread. This study provided a better understanding of the role of EPS in sourdough in improving bread quality and of promising strategies to address consumer demand for nutritious and clean-label products.

15.
Front Nutr ; 10: 1230043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545587

RESUMO

During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.

16.
Foods ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681377

RESUMO

One percent of the global population requires a gluten-free diet. With concurrent global warming and population growth, it is increasingly necessary to optimize the use of ingredients from resilient crops, such as tapioca. Tapioca flour is used in low proportions in bread due to its lack of gluten. Sourdough fermentation can enhance the nutritional value of bread but also causes a sour taste. Propionibacterium freudenreichii subsp. globosum can reduce food acidity while synthesizing several nutrients, such as vitamin B12. Aquafaba is a known hydrocolloid and prebiotic. Therefore, the objective of this study was to test the sourdough fermentation of a composite bread based on tapioca and brown rice flour, cultured with Lactobacillus lactis and Propionibacterium freudenreichii subsp. globosum enriched in aquafaba. The bread quality was measured instrumentally (hardness, volume, moisture content) and with a semi-trained sensory panel (focus group). The co-fermentation of the Lactobacillus lactis and Propionibacterium freudenreichii subsp. Globosum produced palatable bread, improving the appearance, taste, and texture in comparison to the yeast-leavened recipe. This co-fermentation also enabled shorter production times, reducing it from 1 h to 30 min. The addition of the aquafaba further improved the bread appearance, texture, and volume, although a bitter tasting crust was reported. The co-fermentation of the tapioca-brown rice composite flour with Lactobacillus lactis and Propionibacterium freudenreichii subsp. globosum produced acceptable bread, which could provide a climate-resilient solution to food sustainability. The aquafaba addition further enhanced such improvements and the baking performance, offering sustainability in terms of nutrition, sensory quality, and price.

17.
J Agric Food Chem ; 69(32): 9419-9433, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34374283

RESUMO

Usage of sprouted grains is an increasing trend in thermally processed foods. Sprouting alters the composition of sugars and amino acids, which are Maillard reaction precursors. Free asparagine, total free amino acids, and sugars were monitored during sprouting and yeast and sourdough fermentations. Acrylamide and 5-hydroxymethylfurfural (HMF) were analyzed in heated samples. The asparagine concentration decreased up to 40% after 24-36 h of sprouting, except for buckwheat, and then increased to the initial concentration after 48 h and several folds after 72 h. The increased amount of reducing sugars after sprouting caused higher acrylamide and HMF formation even if the asparagine concentration was lower. Acrylamide and HMF formation decreased after fermentation of sprouted wholemeal because sugars and asparagine were consumed by yeast. A pH drop of 3 units by sourdough fermentation decreased acrylamide formation but increased HMF formation. Results indicated that sprouted cereal products should be produced under controlled conditions to be used in heated foods.


Assuntos
Fagopyrum , Hordeum , Acrilamida , Asparagina , Avena , Fermentação , Furaldeído/análogos & derivados , Calefação , Temperatura Alta , Reação de Maillard , Secale , Açúcares , Triticum
18.
Int J Food Microbiol ; 316: 108426, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31722270

RESUMO

Aiming at meeting recent consumers requirements in terms of high nutritional value and functional foods, the cereal food industry has proposed the use of legumes as wheat substitutes due to the high contents of proteins with high biological value and dietary fibers. Nevertheless, legumes contain several anti-nutritional factors which may limit the bio-availability of several nutrients. In this study, an integrate biotechnological approach, combining a thermal treatment ("gelatinization") and fermentation with selected lactic acid bacteria, was set-up in order to improve the functional and nutritional quality of red and yellow lentils, white and black beans, chickpeas and peas flours. Gelatinization carried out at pilot-plant level on legume grains before milling, affected the nutritional properties of the flours by the increase of protein digestibility, resistant starch formation, the decrease of trypsin inhibitors, although negatively affecting the antioxidant activity. Fermentation with Lactobacillus plantarum MRS1 and Lactobacillus brevis MRS4 further enhanced the nutritional properties of processed legume flours through the increase of free amino acids concentration and protein digestibility, the degradation of phytic acid, condensed tannins and raffinose, and the decrease of the trypsin inhibitory activity and starch hydrolysis index. Moreover, fermentation also contributed to the increase of the radical scavenging activity of both raw and processed legumes.


Assuntos
Fabaceae/química , Farinha/análise , Manipulação de Alimentos/métodos , Lactobacillales/metabolismo , Carboidratos/química , Fermentação , Farinha/microbiologia , Levilactobacillus brevis/metabolismo , Lactobacillus plantarum/metabolismo , Valor Nutritivo , Proteínas/química , Proteínas/metabolismo
19.
Int J Food Microbiol ; 313: 108384, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31670259

RESUMO

Aiming at meeting the recommendations of the World Health Organization regarding the total fiber daily intake, an integrate biotechnological approach, combining xylanase treatment and lactic acid bacteria fermentation of milling by-products from pigmented wheat varieties, hull-less barley and emmer was proposed. The effects on the biochemical and nutritional features were investigated. Enhanced radical scavenging activity, increased concentrations of free amino acids (up to three times) and peptides and optimal in vitro protein digestibility (up to ca. 87%) value as well as relevant phytic acid degradation were achieved during bran fermentation. The main nutritional features of each matrix were enhanced and distinguished. Fortified breads were characterized by a concentration in total dietary fibers and protein of ca. 7 and 13% of dry matter, respectively. Compared to wheat bread the addition of pre-fermented brans caused a significant increase in protein digestibility (up to 79%), and a relevant decrease of the predicted glycemic index (ca. 8%) of the fortified bread. According to the results, this study demonstrates the potential of xylanase treatment and lactic acid bacteria fermentation to be used as suitable strategy to include bran in breadmaking, meeting both nutritional and sensory requests of modern consumers.


Assuntos
Pão/análise , Fibras na Dieta/análise , Endo-1,4-beta-Xilanases/química , Hordeum/microbiologia , Lactobacillales/metabolismo , Triticum/microbiologia , Biocatálise , Pão/microbiologia , Fibras na Dieta/metabolismo , Fermentação , Farinha/análise , Farinha/microbiologia , Aditivos Alimentares/análise , Aditivos Alimentares/metabolismo , Humanos , Lactobacillaceae/metabolismo , Valor Nutritivo , Ácido Fítico/análise , Ácido Fítico/metabolismo , Triticum/química , Resíduos/análise
20.
J Food Sci ; 84(7): 1929-1936, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31218698

RESUMO

This study dealt with the effect of sourdough fermentation on antinutrients, phytochemicals, and antioxidant activities of flours from three Phaseoulus vulgaris L. genotypes with differing composition of lectins. Specifically, cultivar Lady Joy (LJ) devoid of phytohemagglutinin (PHA) and enriched in alfa-amylase inhibitor (αAI), breeding line P500 low in PHA and devoid of αAI, and Taylor's horticultivar, containing normal levels of both proteins. Sourdough fermentation positively affects the nutritional values of all bean flours by reducing some antinutrients, for example, phytic acid while preserving αAI activity. It significantly increased total polyphenols, flavonols, and ascorbic acid content, while reducing flavonoids. No significant differences in antioxidant activity, measured by in vitro and ex vivo assays on human erythrocytes, were found. The kinetic profiles of conjugated dienes analysis showed a strong inhibitory effect on low-density lipoproteins oxidation of all tested powders, with unfermented flours displaying the best antioxidant activity. Among bean powders, unfermented and fermented LJ showed the highest polyphenols level (4.21 ± 0.18 and 4.96 ± 0.15 mg GAE/g dw, respectively), oxygen radical absorbance capacity (ORAC) values (24.17 ± 0.14 and 24.02 ± 0.93 µmol TE/100g dw, respectively) and cellular antioxidant activity (71.6 ± 7.05 and 62.7 ± 3.3 units, respectively). Finally, since fermentation drastically reduces phytic acid content while preserving αAI activity, fermented LJ represents an important natural slimming supplement.


Assuntos
Antioxidantes/análise , Pão/análise , Farinha/análise , Phaseolus/química , Eritrócitos/metabolismo , Fermentação , Genótipo , Humanos , Lipoproteínas LDL/metabolismo , Valor Nutritivo , Oxirredução , Phaseolus/classificação , Phaseolus/metabolismo , Ácido Fítico/análise , Polifenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA