Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.253
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Sci ; 137(20)2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738286

RESUMO

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Assuntos
Cromatina , Entropia , Células-Tronco Pluripotentes Induzidas , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Protoplastos/metabolismo , Reprogramação Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetais/metabolismo , Epigênese Genética
2.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38267259

RESUMO

Sound texture perception takes advantage of a hierarchy of time-averaged statistical features of acoustic stimuli, but much remains unclear about how these statistical features are processed along the auditory pathway. Here, we compared the neural representation of sound textures in the inferior colliculus (IC) and auditory cortex (AC) of anesthetized female rats. We recorded responses to texture morph stimuli that gradually add statistical features of increasingly higher complexity. For each texture, several different exemplars were synthesized using different random seeds. An analysis of transient and ongoing multiunit responses showed that the IC units were sensitive to every type of statistical feature, albeit to a varying extent. In contrast, only a small proportion of AC units were overtly sensitive to any statistical features. Differences in texture types explained more of the variance of IC neural responses than did differences in exemplars, indicating a degree of "texture type tuning" in the IC, but the same was, perhaps surprisingly, not the case for AC responses. We also evaluated the accuracy of texture type classification from single-trial population activity and found that IC responses became more informative as more summary statistics were included in the texture morphs, while for AC population responses, classification performance remained consistently very low. These results argue against the idea that AC neurons encode sound type via an overt sensitivity in neural firing rate to fine-grain spectral and temporal statistical features.


Assuntos
Córtex Auditivo , Colículos Inferiores , Feminino , Ratos , Animais , Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia , Mesencéfalo/fisiologia , Som , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(17): e2115302119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439063

RESUMO

The human visual ability to recognize objects and scenes is widely thought to rely on representations in category-selective regions of the visual cortex. These representations could support object vision by specifically representing objects, or, more simply, by representing complex visual features regardless of the particular spatial arrangement needed to constitute real-world objects, that is, by representing visual textures. To discriminate between these hypotheses, we leveraged an image synthesis approach that, unlike previous methods, provides independent control over the complexity and spatial arrangement of visual features. We found that human observers could easily detect a natural object among synthetic images with similar complex features that were spatially scrambled. However, observer models built from BOLD responses from category-selective regions, as well as a model of macaque inferotemporal cortex and Imagenet-trained deep convolutional neural networks, were all unable to identify the real object. This inability was not due to a lack of signal to noise, as all observer models could predict human performance in image categorization tasks. How then might these texture-like representations in category-selective regions support object perception? An image-specific readout from category-selective cortex yielded a representation that was more selective for natural feature arrangement, showing that the information necessary for natural object discrimination is available. Thus, our results suggest that the role of the human category-selective visual cortex is not to explicitly encode objects but rather to provide a basis set of texture-like features that can be infinitely reconfigured to flexibly learn and identify new object categories.


Assuntos
Córtex Visual , Vias Visuais , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Reconhecimento Visual de Modelos , Estimulação Luminosa , Percepção Visual
4.
Nano Lett ; 24(7): 2210-2217, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320301

RESUMO

The Z4 symmetry indicator is widely used to classify topological materials hosting inversion symmetry. We find orthorhombic Li2AuBi in space group Cmcm is a topological insulator with Z4=1 under no strain via first-principles calculations. Due to small band gaps in the kz = 0 plane, the band inversions can be selectively induced by moderate external strains to realize phases covering all values of Z4 = 1, 2, 3, and 0. Detailed Z4 phase diagrams are plotted under various moderate strains. The (001) surface states and their associated Fermi surfaces and spin textures are calculated. The topological surface states have different connectivities and different spin textures for the four different Z4 phases. The tunability of topological surface states via moderate strain suggests Li2AuBi as an attractive topological material for device applications.

5.
J Neurosci ; 43(22): 4144-4161, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37127366

RESUMO

Midlevel features, such as contour and texture, provide a computational link between low- and high-level visual representations. Although the nature of midlevel representations in the brain is not fully understood, past work has suggested a texture statistics model, called the P-S model (Portilla and Simoncelli, 2000), is a candidate for predicting neural responses in areas V1-V4 as well as human behavioral data. However, it is not currently known how well this model accounts for the responses of higher visual cortex to natural scene images. To examine this, we constructed single-voxel encoding models based on P-S statistics and fit the models to fMRI data from human subjects (both sexes) from the Natural Scenes Dataset (Allen et al., 2022). We demonstrate that the texture statistics encoding model can predict the held-out responses of individual voxels in early retinotopic areas and higher-level category-selective areas. The ability of the model to reliably predict signal in higher visual cortex suggests that the representation of texture statistics features is widespread throughout the brain. Furthermore, using variance partitioning analyses, we identify which features are most uniquely predictive of brain responses and show that the contributions of higher-order texture features increase from early areas to higher areas on the ventral and lateral surfaces. We also demonstrate that patterns of sensitivity to texture statistics can be used to recover broad organizational axes within visual cortex, including dimensions that capture semantic image content. These results provide a key step forward in characterizing how midlevel feature representations emerge hierarchically across the visual system.SIGNIFICANCE STATEMENT Intermediate visual features, like texture, play an important role in cortical computations and may contribute to tasks like object and scene recognition. Here, we used a texture model proposed in past work to construct encoding models that predict the responses of neural populations in human visual cortex (measured with fMRI) to natural scene stimuli. We show that responses of neural populations at multiple levels of the visual system can be predicted by this model, and that the model is able to reveal an increase in the complexity of feature representations from early retinotopic cortex to higher areas of ventral and lateral visual cortex. These results support the idea that texture-like representations may play a broad underlying role in visual processing.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Masculino , Feminino , Humanos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos
6.
J Struct Biol ; 216(4): 108126, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244170

RESUMO

The global crystallographic texture of calcite and aragonite in the shells of the bivalves Bathymodiolus thermophilus, Mytilus galloprovincialis, M. edulis and M. trossulus was studied by means of neutron diffraction. It was revealed that the general appearance of pole figures isolines of both minerals coincides for the studied species. The crystallographic texture sharpness evaluated by means of pole density on the calcite pole figures ((0006), (101¯4)) and aragonite pole figures ((012)/(121), (040)/(221)) coincides or has close values for deep-sea hydrothermal species B. thermophilus and the studied shallow-water species of the genus Mytilus. The calcite pole figures (0006) and (101¯4) of B. thermophilus show a shift in the position of texture maximum values compared to corresponding pole figures of other mussels. The shell microstructure of all studied mollusks is similar, only the shape of the fibers of B. thermophilus differs. Global crystallographic texture is a stable feature of the family Mytilidae. The extreme habitat conditions of the hydrothermal biotope do not significantly affect the crystallographic texture of B. thermophilus.

7.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443859

RESUMO

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Assuntos
Dioscorea , Dioscorea/genética , Melhoramento Vegetal , Genômica , Fenótipo , Amido
8.
Neuroimage ; 289: 120561, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428551

RESUMO

Previous studies of vicarious touch suggest that we automatically simulate observed touch experiences in our own body representation including primary and secondary somatosensory cortex (SCx). However, whether these early sensory areas are activated in a reflexive manner and the extent with which such SCx activations represent touch qualities, like texture, remains unclear. We measured event-related potentials (ERPs) of SCx's hierarchical processing stages, which map onto successive somatosensory ERP components, to investigate the timing of vicarious touch effects. In the first experiment, participants (n = 43) merely observed touch or no-touch to a hand; in the second, participants saw different touch textures (soft foam and hard rubber) either touching a hand (other-directed) or they were instructed that the touch was self-directed and to feel the touch. Each touch sequence was followed by a go/no-go task. We probed SCx activity and isolated SCx vicarious touch activations from visual carry over effects. We found that vicarious touch conditions (touch versus no-touch and soft versus hard) did not modulate early sensory ERP components (i.e. P50, N80); but we found effects on behavioural responses to the subsequent go/no-go stimulus consistent with post-perceptual effects. When comparing other- with self-directed touch conditions, we found that early and mid-latency components (i.e. P50, N80, P100, N140) were modulated consistent with early SCx activations. Importantly, these early sensory activations were not modulated by touch texture. Therefore, SCx is purposely recruited when participants are instructed to attend to touch; but such activation only situates, rather than fully simulates, the seen tactile experience in SCx.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Potenciais Evocados/fisiologia , Mãos , Pele , Eletroencefalografia
9.
Neuroimage ; 297: 120688, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878916

RESUMO

The human brain is organized as a complex, hierarchical network. However, the structural covariance patterns among brain regions and the underlying biological substrates of such covariance networks remain to be clarified. The present study proposed a novel individualized structural covariance network termed voxel-based texture similarity networks (vTSNs) based on 76 refined voxel-based textural features derived from structural magnetic resonance images. Validated in three independent longitudinal healthy cohorts (40, 23, and 60 healthy participants, respectively) with two common brain atlases, we found that the vTSN could robustly resolve inter-subject variability with high test-retest reliability. In contrast to the regional-based texture similarity networks (rTSNs) that calculate radiomic features based on region-of-interest information, vTSNs had higher inter- and intra-subject variability ratios and test-retest reliability in connectivity strength and network topological properties. Moreover, the Spearman correlation indicated a stronger association of the gene expression similarity network (GESN) with vTSNs than with rTSNs (vTSN: r = 0.600, rTSN: r = 0.433, z = 39.784, P < 0.001). Hierarchical clustering identified 3 vTSN subnets with differential association patterns with 13 coexpression modules, 16 neurotransmitters, 7 electrophysiology, 4 metabolism, and 2 large-scale structural and 4 functional organization maps. Moreover, these subnets had unique biological hierarchical organization from the subcortex-limbic system to the ventral neocortex and then to the dorsal neocortex. Based on 424 unrelated, qualified healthy subjects from the Human Connectome Project, we found that vTSNs could sensitively represent sex differences, especially for connections in the subcortex-limbic system and between the subcortex-limbic system and the ventral neocortex. Moreover, a multivariate variance component model revealed that vTSNs could explain a significant proportion of inter-subject behavioral variance in cognition (80.0 %) and motor functions (63.4 %). Finally, using 494 healthy adults (aged 19-80 years old) from the Southwest University Adult Lifespan Dataset, the Spearman correlation identified a significant association between aging and vTSN strength, especially within the subcortex-limbic system and between the subcortex-limbic system and the dorsal neocortex. In summary, our proposed vTSN is robust in uncovering individual variability and neurobiological brain processes, which can serve as biologically plausible measures for linking biological processes and human behavior.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Adulto Jovem , Ontologias Biológicas , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/anatomia & histologia , Pessoa de Meia-Idade , Conectoma/métodos , Reprodutibilidade dos Testes , Idoso
10.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
11.
J Neurophysiol ; 132(3): 643-652, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015076

RESUMO

We frequently interact with textured surfaces with both our feet and hands. Like texture's importance for grasping, texture perception via the foot sole might provide important signals about the stability of a surface, aiding in maintaining balance. However, how textures are perceived by the foot, and especially under the high forces experienced during walking, is unknown. The current study builds on extensive research investigating texture perception at the hand by presenting everyday textures to the foot while stepping onto them, exploring them with the foot while sitting, and exploring them with the hand. Participants rated each texture along three perceptual dimensions: roughness, hardness, and stickiness. Participants also rated how stable their posture felt when standing upon each texture. Results show that perceptual ratings of each textural dimension were highly correlated across conditions. Hardness exhibited the greatest consistency and stickiness the weakest. Moreover, correlations between stepping and exploration with the foot were lower than those between exploration with the foot and exploration with the hand, suggesting that mode of interaction (high vs. low force) impacts perception more than body region used (foot vs. hand). On an individual level, correlations between conditions were higher than those between participants, suggesting that differences are greater between individuals than between mode of interaction or body region. When investigating the relationship to perceived stability, only hardness contributed significantly, with harder surfaces rated as more stable. Overall, tactile perception appears consistent across body regions and interaction modes, although differences in perception are greater during walking.NEW & NOTEWORTHY We frequently interact with textured surfaces using our feet, but little is known about how textures on the foot sole are perceived as compared with the hand. Here, we show that roughness, hardness, and stickiness ratings are broadly consistent when stepping on textures, exploring them with the foot sole, or with the hand. Hardness also contributes to perceived stability.


Assuntos
, Mãos , Percepção do Tato , Caminhada , Humanos , Caminhada/fisiologia , Masculino , Feminino , Pé/fisiologia , Percepção do Tato/fisiologia , Adulto , Mãos/fisiologia , Adulto Jovem , Postura Sentada
12.
Curr Issues Mol Biol ; 46(4): 3236-3250, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666933

RESUMO

Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.

13.
Hum Brain Mapp ; 45(11): e26798, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39081128

RESUMO

Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle-aged apolipoprotein ε4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non-carriers of the ε4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross-sectional study, we investigated textural properties of T1-weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT-Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel-based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non-carriers. Textural maps were generated and were subsequently harmonised using voxel-wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non-carriers at midlife and have established associations of textural features with ageing and sex.


Assuntos
Envelhecimento , Apolipoproteína E4 , Imageamento por Ressonância Magnética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/patologia , Envelhecimento/genética , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Genótipo , Heterozigoto , Caracteres Sexuais
14.
Small ; 20(11): e2308209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880867

RESUMO

Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.

15.
Small ; 20(9): e2305528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845030

RESUMO

Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location.  The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.

16.
Small ; : e2402489, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881269

RESUMO

Aqueous zinc metal batteries are a viable candidate for next-generation energy storage systems, but suffer from poor cycling efficiency of the Zn anode. Emerging approaches aim to regulate zinc plating behavior to suppress uncontrolled dendrites, while the stripping process is seldom considered. Herein, an oriented metal stripping strategy is demonstrated to stabilize the Zn anode by removing high-index facets for exposing the (002) plane through the addition of anionic additive sodium citrate (SC). Consequently, high-index facets that coordinate strongly with SC are preferentially stripped out due to a reduced stripping barrier, rendering stable (002) facet preponderant in epitaxial plating. After repeat stripping/plating, the ultra-high proportion of 93% for (002) and large-size grains of ≈100 µm (six times larger than before) can be obtained. Zn anode shows continuous 25 000 cycles with low overpotential at 100 mA cm-2 in symmetric cells and more than 70 h of stable operation even at an ultra-high depth of discharge of 92.3%. Moreover, an extremely long lifespan of 12 000 cycles at 10 A g-1 with a high capacity retention of 89% is achieved by the assembled Zn//I2 battery. This work provides a distinctive approach to improving the stripping process to design highly efficient zinc anodes for promising aqueous zinc metal batteries.

17.
NMR Biomed ; 37(9): e5144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38556777

RESUMO

OBJECTIVES: To evaluate the role of combined intravoxel incoherent motion and diffusion kurtosis imaging (IVIM-DKI) and their machine-learning-based texture analysis for the detection and assessment of severity in prostate cancer (PCa). MATERIALS AND METHODS: Eighty-eight patients underwent MRI on a 3 T scanner after giving informed consent. IVIM-DKI data were acquired using 13 b values (0-2000 s/mm2) and analyzed using the IVIM-DKI model with the total variation (TV) method. PCa patients were categorized into two groups: clinically insignificant prostate cancer (CISPCa) (Gleason grade ≤ 6) and clinically significant prostate cancer (CSPCa) (Gleason grade ≥ 7). One-way analysis-of-variance, t test, and receiver operating characteristic analysis was performed to measure the discriminative ability to detect PCa using IVIM-DKI parameters. A chi-square test was used to select important texture features of apparent diffusion coefficient (ADC) and IVIM-DKI parameters. These selected texture features were used in an artificial neural network for PCa detection. RESULTS: ADC and diffusion coefficient (D) were significantly lower (p < 0.001), and kurtosis (k) was significantly higher (p < 0.001), in PCa as compared with benign prostatic hyperplasia (BPH) and normal peripheral zone (PZ). ADC, D, and k showed high areas under the curves (AUCs) of 0.92, 0.89, and 0.88, respectively, in PCa detection. ADC and D were significantly lower (p < 0.05) as compared with CISPCa versus CSPCa. D for detecting CSPCa was high, with an AUC of 0.63. A negative correlation of ADC and D with GS (ADC, ρ = -0.33; D, ρ = -0.35, p < 0.05) and a positive correlation of k with GS (ρ = 0.22, p < 0.05) were observed. Combined IVIM-DKI texture showed high AUC of 0.83 for classification of PCa, BPH, and normal PZ. CONCLUSION: D, f, and k computed using the IVIM-DKI model with the TV method were able to differentiate PCa from BPH and normal PZ. Texture features of combined IVIM-DKI parameters showed high accuracy and AUC in PCa detection.


Assuntos
Aprendizado de Máquina , Movimento (Física) , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética , Curva ROC
18.
Rev Endocr Metab Disord ; 25(1): 175-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37434097

RESUMO

BACKGROUND: In the last years growing evidences on the role of radiomics and machine learning (ML) applied to different nuclear medicine imaging modalities for the assessment of thyroid diseases are starting to emerge. The aim of this systematic review was therefore to analyze the diagnostic performances of these technologies in this setting. METHODS: A wide literature search of the PubMed/MEDLINE, Scopus and Web of Science databases was made in order to find relevant published articles about the role of radiomics or ML on nuclear medicine imaging for the evaluation of different thyroid diseases. RESULTS: Seventeen studies were included in the systematic review. Radiomics and ML were applied for assessment of thyroid incidentalomas at 18 F-FDG PET, evaluation of cytologically indeterminate thyroid nodules, assessment of thyroid cancer and classification of thyroid diseases using nuclear medicine techniques. CONCLUSION: Despite some intrinsic limitations of radiomics and ML may have affect the results of this review, these technologies seem to have a promising role in the assessment of thyroid diseases. Validation of preliminary findings in multicentric studies is needed to translate radiomics and ML approaches in the clinical setting.


Assuntos
Medicina Nuclear , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Radiômica , Fluordesoxiglucose F18 , Aprendizado de Máquina
19.
BMC Cancer ; 24(1): 170, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310283

RESUMO

BACKGROUND: The prognosis of SCLC is poor and difficult to predict. The aim of this study was to explore whether a model based on radiomics and clinical features could predict the prognosis of patients with limited-stage small cell lung cancer (LS-SCLC). METHODS: Simulated positioning CT images and clinical features were retrospectively collected from 200 patients with histological diagnosis of LS-SCLC admitted between 2013 and 2021, which were randomly divided into the training (n = 140) and testing (n = 60) groups. Radiomics features were extracted from simulated positioning CT images, and the t-test and the least absolute shrinkage and selection operator (LASSO) were used to screen radiomics features. We then constructed radiomic score (RadScore) based on the filtered radiomics features. Clinical factors were analyzed using the Kaplan-Meier method. The Cox proportional hazards model was used for further analyses of possible prognostic features and clinical factors to build three models including a radiomic model, a clinical model, and a combined model including clinical factors and RadScore. When a model has prognostic predictive value (AUC > 0.7) in both train and test groups, a nomogram will be created. The performance of three models was evaluated using area under the receiver operating characteristic curve (AUC) and Kaplan-Meier analysis. RESULTS: A total of 1037 features were extracted from simulated positioning CT images which were contrast enhanced CT of the chest. The combined model showed the best prediction, with very poor AUC for the radiomic model and the clinical model. The combined model of OS included 4 clinical features and RadScore, with AUCs of 0.71 and 0.70 in the training and test groups. The combined model of PFS included 4 clinical features and RadScore, with AUCs of 0.72 and 0.71 in the training and test groups. T stages, ProGRP and smoke status were the independent variables for OS in the combined model, whereas T stages, ProGRP and prophylactic cranial irradiation (PCI) were the independent factors for PFS. There was a statistically significant difference between the low- and high-risk groups in the combined model of OS (training group, p < 0.0001; testing group, p = 0.0269) and PFS (training group, p < 0.0001; testing group, p < 0.0001). CONCLUSION: Combined models involved RadScore and clinical factors can predict prognosis in LS-SCLC and show better performance than individual radiomics and clinical models.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Prognóstico , Radiômica , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/terapia , Tomografia Computadorizada por Raios X
20.
Ann Hematol ; 103(9): 3713-3721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39046513

RESUMO

In multiple myeloma (MM) bone marrow infiltration by monoclonal plasma cells can occur in both focal and diffuse manner, making staging and prognosis rather difficult. The aim of our study was to test whether texture analysis of 18 F-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) images can predict survival in MM patients. Forty-six patients underwent 18 F-FDG-PET/CT before treatment. We used an automated contouring program for segmenting the hottest focal lesion (FL) and a lumbar vertebra for assessing diffuse bone marrow involvement (DI). Maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and texture features such as Coefficient of variation (CoV), were obtained from 46 FL and 46 DI. After a mean follow-up of 51 months, 24 patients died of myeloma and were compared to the 22 survivors. At univariate analysis, FL SUVmax (p = 0.0453), FL SUVmean (p = 0.0463), FL CoV (p = 0.0211) and DI SUVmax (p = 0.0538) predicted overall survival (OS). At multivariate analysis only FL CoV and DI SUVmax were retained in the model (p = 0.0154). By Kaplan-Meier method and log-rank testing, patients with FL CoV below the cut-off had significantly better OS than those with FL CoV above the cut-off (p = 0.0003), as well as patients with DI SUVmax below the threshold versus those with DI SUVmax above the threshold (p = 0.0006). Combining FL CoV and DI SUVmax by using their respective cut-off values, a statistically significant difference was found between the resulting four survival curves (p = 0.0001). Indeed, patients with both FL CoV and DI SUVmax below their respective cut-off values showed the best prognosis. Conventional and texture parameters derived from 18F-FDG PET/CT analysis can predict survival in MM patients by assessing the heterogeneity and aggressiveness of both focal and diffuse infiltration.


Assuntos
Fluordesoxiglucose F18 , Mieloma Múltiplo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/mortalidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Idoso de 80 Anos ou mais , Adulto , Seguimentos , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA