Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 195: 243-251, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953832

RESUMO

In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life.


Assuntos
Comissura Anterior/patologia , Transtorno do Espectro Autista/patologia , Orientação de Axônios/fisiologia , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Orientação de Axônios/efeitos dos fármacos , Callithrix , Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Modelos Animais de Doenças , Receptores Frizzled/biossíntese , GABAérgicos/toxicidade , Transcriptoma/efeitos dos fármacos , Ácido Valproico/toxicidade
3.
Neuroimage Clin ; 25: 102133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945651

RESUMO

We investigated the effects of blindness on the structural and functional integrity of the corpus callosum and the anterior commissure (AC), which together form the two major components of the commissural pathways. Twelve congenitally blind (CB), 15 late blind (LB; mean onset of blindness of 16.6 ± 8.9 years), and 15 matched normally sighted controls (SC) participated in a multimodal brain imaging study. Magnetic resonance imaging(MRI) data were acquired using a 3T scanner, and included a structural brain scan, resting state functional MRI, and diffusion-weighted imaging. We used tractography to divide the AC into its anterior (aAC) and posterior (pAC) branch. Virtual tract dissection was performed using a deterministic spherical deconvolution tractography algorithm. The corpus callosum was subdivided into five subregions based on the criteria described by Witelson and modified by Bermudez and Zatorre. Our data revealed decreased fractional anisotropy of the pAC in CB and LB compared to SC, together with an increase in the number of streamlines in CB only. In addition, the AC surface area was significantly larger in CB compared to SC and LB, and correlated with the number of streamlines in pAC (rho = 0.55) and tract volume (rho = 0.46). As for the corpus callosum, the splenial part was significantly smaller in CB and LB, and fewer streamlines passed through it. We did not find group differences in functional connectivity of cortical areas connected by fibers crossing any of the five callosal subregions. The present data suggest that the two main components of the commissural system undergo neuroplastic changes, irrespective of the age of onset of blindness, although the alterations observed in the AC are more important in congenital than late-onset blindness.


Assuntos
Comissura Anterior/patologia , Cegueira/patologia , Corpo Caloso/patologia , Adolescente , Adulto , Idade de Início , Comissura Anterior/fisiopatologia , Cegueira/fisiopatologia , Corpo Caloso/fisiopatologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Plasticidade Neuronal/fisiologia , Adulto Jovem
4.
Neurosci Lett ; 714: 134569, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644920

RESUMO

Down syndrome is the most common genetic cause of intellectual disability and occurs due to the trisomy of human chromosome 21. Adolescent and adult brains from humans with Down syndrome exhibit various neurological phenotypes including a reduction in the size of the corpus callosum, hippocampal commissure and anterior commissure. However, it is unclear when and how these interhemispheric connectivity defects arise. Using the Ts65Dn mouse model of Down syndrome, we examined interhemispheric connectivity in postnatal day 0 (P0) Ts65Dn mouse brains. We find that there is no change in the volume of the corpus callosum or anterior commissure in P0 Ts65Dn mice. However, the volume of the hippocampal commissure is significantly reduced in P0 Ts65Dn mice, and this may contribute to the impaired learning and memory phenotype of this disorder. Interhemispheric connectivity defects that arise during development may be due to disrupted axon growth. In line with this, we find that developing hippocampal neurons display reduced axon length in vitro, as compared to neurons from their euploid littermates. This study is the first to report the presence of defective interhemispheric connectivity at the time of birth in Ts65Dn mice, providing evidence that early therapeutic intervention may be an effective time window for the treatment of Down syndrome.


Assuntos
Comissura Anterior/patologia , Axônios/patologia , Corpo Caloso/patologia , Síndrome de Down/patologia , Fórnice/patologia , Animais , Animais Recém-Nascidos , Comissura Anterior/fisiopatologia , Orientação de Axônios/fisiologia , Tamanho Celular , Corpo Caloso/fisiopatologia , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Fórnice/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Vias Neurais , Neurogênese/fisiologia , Crescimento Neuronal , Neurônios/patologia , Tamanho do Órgão
5.
J Comp Neurol ; 528(16): 2679-2694, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301107

RESUMO

GABAergic medium spiny neurons are the main neuronal population in the striatum. Calbindin is preferentially expressed in medium spiny neurons involved in the indirect pathway. The aim of the present work is to analyze the effect of perinatal asphyxia on different subpopulations of GABAergic neurons in the striatum and to assess the outcome of deep therapeutic hypothermia. The uterus of pregnant rats was removed by cesarean section and the fetuses were exposed to hypoxia by immersion in water (19 min) at 37°C (perinatal asphyxia). The hypothermic group was exposed to 10°C during 30 min after perinatal asphyxia. The rats were euthanized at the age of one month (adolescent/adult rats), their brains were dissected out and coronal sections were immunolabeled for calbindin, calretinin, NeuN, and reelin. Reelin+ cells showed no staining in the striatum besides subventricular zone. The perinatal asphyxia (PA) group showed a significant decrease in calbindin neurons and a paradoxical increase in neurons estimated by NeuN staining. Moreover, calretinin+ cells, a specific subpopulation of GABAergic neurons, showed an increase caused by PA. Deep hypothermia reversed most of these alterations probably by protecting calbindin neurons. Similarly, there was a reduction of the diameter of the anterior commissure produced by the asphyxia that was prevented by hypothermic treatment.


Assuntos
Asfixia Neonatal/terapia , Corpo Estriado/patologia , Discinesias/prevenção & controle , Hipotermia Induzida/métodos , Transtornos Psicóticos/prevenção & controle , Animais , Animais Recém-Nascidos , Comissura Anterior/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Calbindina 2/metabolismo , Calbindinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Corpo Estriado/metabolismo , Discinesias/etiologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Transtornos Psicóticos/etiologia , Ratos , Ratos Sprague-Dawley , Proteína Reelina , Serina Endopeptidases/metabolismo
6.
World Neurosurg ; 96: 556-561, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27647022

RESUMO

INTRODUCTION: Intrameatal cochleovestibular neurovascular conflict is a rare condition with specific clinical and therapeutic implications. Although surgery is commonly indicated in other neurovascular conflicts, for this subset of patients there is little evidence to guide treatment decisions. Moving from a case description, we performed a review of the literature on this topic to systematically present the best available evidence to guide clinical decisions. METHODS: We performed a literature review on reported cases of surgically treated intrameatal anterior inferior cerebellar artery (AICA)-cochleovestibular nerve neurovascular conflict, analyzing preoperative clinical data, surgical techniques, and outcomes. We analyzed the levels of evidence using the King's College guidelines. DISCUSSION: We found 35 studies of neurovascular compression of the cochleovestibular nerve by AICA for 536 patients operated on to resolve their neurovascular conflict. Only 4 of these studies describe intrameatal AICA neurovascular conflicts, for 9 cases, including our own. Tinnitus was the most frequent symptom (9/9), followed by vertigo (2/9). Our case was the only one showing unilateral hearing loss. Surgery consisted of microsurgical mobilization of the AICA loop performed through a retrosigmoid craniotomy. Tinnitus and vertigo resolved after surgery in all cases, whereas hearing loss did not improve after surgery. CONCLUSIONS: Surgical treatment offers the best results for tinnitus and vertigo, but it seems to have no effect on hearing loss, not even at long-term follow-up. Microvascular decompression should be proposed to intrameatal symptomatic patients before the onset of hearing loss.


Assuntos
Cirurgia de Descompressão Microvascular/efeitos adversos , Síndromes de Compressão Nervosa/cirurgia , Doenças do Nervo Vestibulococlear/cirurgia , Nervo Vestibulococlear/cirurgia , Comissura Anterior/patologia , Humanos , PubMed/estatística & dados numéricos
7.
Neural Dev ; 10: 10, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879444

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. RESULTS: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. CONCLUSIONS: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/patologia , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Envelhecimento/patologia , Animais , Comissura Anterior/patologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Fórnice/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes Neurológicos , Fenótipo , Córtex Somatossensorial/patologia , Córtex Visual/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA