Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 548, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642142

RESUMO

INTRODUCTION: Paracetamol (acetaminophen) overdose is a leading cause of acute liver failure in many Western countries. Diagnostic tools for this poisoning may be suboptimal in some cases and new biomarkers have been investigated. We investigated the role of capillary microRNA-122 (miR-122) as a prognostic biomarker of liver injury in the clinical management of patients with paracetamol overdose. METHODS: In a paracetamol overdose patient cohort, miR-122 was measured by quantitative polymerase chain reaction in a blood drop obtained by a finger prick at the end of an antidote cycle treatment with N-acetylcysteine treatment (12 h). Liver injury was defined as serum alanine aminotransferase (ALT) activity > 100 IU/L collected at 10 or 20 h after the start of treatment. Pearson's correlation analyses were performed. RESULTS: In patients with paracetamol overdose, capillary miR-122 was positively correlated with ALT measured at 10 h and at 20 h (r = 0.83, P < 0.0001; r = 0.96, P < 0.0001, respectively). CONCLUSION: This work supports the potential use of capillary miR-122 as a prognostic biomarker of liver injury throughout clinical management of patients with paracetamol overdose. Capillary miR-122 can be measured in a blood drop collected by a finger prick, a minimally invasive diagnostic test for patient stratification.


Assuntos
Analgésicos não Narcóticos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Humanos , Acetaminofen/efeitos adversos , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , MicroRNAs/sangue , MicroRNAs/genética , Prognóstico , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética
2.
Pharmacol Res ; 177: 106125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149186

RESUMO

Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , NF-kappa B , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Etanol/toxicidade , Inflamação/genética , Camundongos , NF-kappa B/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
Alcohol Clin Exp Res ; 46(12): 2163-2176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224745

RESUMO

BACKGROUND: The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS: We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS: Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION: Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Etanol/farmacologia , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477898

RESUMO

Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3' autonomous untranslated regions (3'UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doenças dos Peixes/genética , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , RNA Longo não Codificante/genética , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/patologia , Fígado/metabolismo , Fígado/patologia , MicroRNAs/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , Salmonidae/genética , Análise de Sequência de RNA , Transcriptoma/genética
5.
Liver Int ; 40(1): 141-154, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571363

RESUMO

BACKGROUND & AIMS: Rifampicin (RFP)-induced cholestatic liver injury is characterized by impaired hepatic bile acid (BA) transport. Bile salt efflux pump (BSEP) and Na+/taurocholate cotransporter (NTCP) are the major BA transporters. However, little is known about the mechanisms underlying these transporters. METHODS: The role of tanshinone IIA (TAN IIA) in preventing RFP-induced liver injury was evaluated in vitro and in vivo, based on the regulatory mechanism of nuclear factor erythroid 2-related factor 2 (NRF2)-BSEP/NTCP signalling. The epigenetic induction of NRF2 by TAN IIA was investigated as well as the influence on BSEP and NTCP transcriptional activation and NRF2 DNA-binding ability. RESULTS: TAN IIA strongly induced BSEP and NTCP expression in hepatocytes. NRF2 knockdown abrogated the induction. We found two NRF2 binding sites on the human BSEP promoter, called musculoaponeurotic fibrosarcoma recognition elements (MAREs), and one MARE on the NTCP promoter. Human BSEP and NTCP promoter luciferase reporter gene plasmids were stimulated by NRF2. Mutations of the predicted MAREs abolished NRF2 transcriptional activation. TAN IIA induced the expression of ten-eleven translocation 2 (TET2) to mediate the demethylation of NRF2, which promoted NRF2 DNA-binding on the BSEP and NTCP promoters and their transcriptional activation. Finally, in vivo, Nrf2 played an important role in RFP-induced liver injury (more serious liver injury in Nrf2-/- mice), and TAN IIA prevented it. CONCLUSIONS: These results indicate that NRF2 regulates the target transporters BSEP and NTCP, depending on the DNA demethylation by TET2. Pharmacological activation of NRF2 by TAN IIA may be beneficial for RFP-induced liver injury.


Assuntos
Abietanos/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Epigênese Genética , Fator 2 Relacionado a NF-E2/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Rifampina/toxicidade , Simportadores/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Feminino , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo
6.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919559

RESUMO

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes , Hepatite Crônica/genética , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite Crônica/fisiopatologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Mol Pharmacol ; 95(6): 597-605, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30944208

RESUMO

Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. The sulfotransferase-mediated sulfation of APAP is widely believed to be a protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of HNF4α, overexpression of HNF4α sensitized mice or primary hepatocytes to APAP-induced hepatotoxicity in a Sult2B1b-dependent manner. We conclude that the HNF4α-SULT2B1b axis has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk factor for APAP hepatotoxicity.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas/complicações , Fator 4 Nuclear de Hepatócito/metabolismo , Sulfotransferases/genética , Animais , Células Cultivadas , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Modelos Animais de Doenças , Overdose de Drogas/etiologia , Overdose de Drogas/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Sulfotransferases/metabolismo
8.
Hepatology ; 67(3): 924-939, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28961327

RESUMO

Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures. In addition to established human HCC genes and pathways, we identified several injury-associated candidates that represent promising loci for further study. Among them, we found that FIGN is overexpressed in human HCC and promotes hepatocyte invasion. We also validated Gli2's oncogenic potential in vivo, providing direct evidence that Hedgehog signaling can drive liver tumorigenesis in the context of chronic injury. Finally, we show that a subset of injury-associated candidate genes identifies two distinct classes of human HCCs. Further analysis of these two subclasses revealed significant trends among common molecular classification schemes of HCC. The genes and mechanisms identified here provide functional insights into the origin of HCC in a chronic liver damage environment. CONCLUSION: A chronically damaged liver microenvironment influences the genetic mechanisms that drive hepatocarcinogenesis. (Hepatology 2018;67:924-939).


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Neoplasias Hepáticas/genética , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Fígado/patologia , Masculino , Camundongos , Mutagênese , Mutação
9.
Int Arch Occup Environ Health ; 92(7): 967-975, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30993423

RESUMO

OBJECTIVE: To investigate the effects of the interactions between the CYP2E1 and GOT2 gene polymorphisms and N,N-dimethylformamide (DMF) on liver injury. METHODS: A total of 672 DMF-exposed workers were randomly selected from two synthetic leather enterprises in Suzhou, China, for follow-up in a cohort study. Information on exposure to DMF in the air was collected through a fixed-point air sampler in the worker's breathing zone. The subjects were assessed every year during the period of 2010-2015, they underwent occupational health examinations. Alanine aminotransferase and aspartate aminotransferase levels were measured. Peripheral blood was collected and DNA was extracted. The genotypes rs2031920, rs3813867 and rs6413432 of the CYP2E1 gene and rs7204324 of the GOT2 gene were detected by PCR, and analyzed using the Chi-square test and logistic regression analysis. RESULTS: Workers exposed to a high cumulative dose of DMF were significantly more likely than low-exposed workers to develop liver injury. No association was observed between rs2031920, rs3813867 and rs6413432 of the CYP2E1 gene and DMF-induced liver damage. However, the A allele of rs7204324 on the GOT2 gene may be a risk factor for susceptibility to DMF-induced liver injury. CONCLUSION: Polymorphisms of rs7204324 on GOT2 may play an important role in susceptibility to liver injury following exposure to DMF.


Assuntos
Aspartato Aminotransferases/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Citocromo P-450 CYP2E1/genética , Dimetilformamida/intoxicação , Exposição Ocupacional/efeitos adversos , Adulto , Poluentes Ocupacionais do Ar/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/epidemiologia , China , Estudos de Coortes , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores de Risco
10.
Biochem Biophys Res Commun ; 503(2): 1063-1069, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29958886

RESUMO

The circadian rhythm, which regulates various body functions, is transcriptionally controlled by a series of clock gene clusters. The clock genes are related to the pathology of various kinds of diseases. Although there is evidence of serious sleep disorders in patients with chronic hepatitis, the liver regeneration mechanism under chronic hepatitis conditions and its association with the clock genes are not clear. In this study, the influence of the circadian locomotor output cycles kaput (CLOCK), which is one of the clock genes, on a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced hepatitis animal model was investigated. The appearance of potential hepatic stem-like cells (epithelial cell adhesion molecule [EpCAM]-positive cells) is an initial critical step in liver regeneration during chronic inflammation. The results showed a considerable number of hepatic EpCAM-positive cells in the wild-type (WT) mice 1 week after the DDC feeding. However, the number of EpCAM-positive cells in the Clock-mutant (Clk/Clk) mice decreased, and their hepatitis was worse compared with the WT mice. In addition, the expression of Epcam mRNA, which is a functional marker of potential hepatic stem-like cells, was controlled by LEF1, which was regulated by CLOCK. The results of this study will facilitate the elucidation of the liver regeneration mechanisms, including those at the molecular level, and may assist in the development of new treatment modalities in the future.


Assuntos
Proteínas CLOCK/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Molécula de Adesão da Célula Epitelial/genética , Células-Tronco/metabolismo , Ativação Transcricional , Animais , Linhagem Celular Tumoral , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Ritmo Circadiano , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos Endogâmicos ICR , Mutação , Piridinas , Células-Tronco/patologia , Fator de Transcrição 4/metabolismo
11.
Biochem Biophys Res Commun ; 478(2): 791-7, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27501760

RESUMO

Hepatocytes from human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are expected to be a useful source for cell transplantation. However, relatively low efficiency and repeatability of hepatic differentiation of human BM-MSCs remains an obstacle for clinical translation. Hepatocyte nuclear factor 4 alpha (HNF4α), a critical transcription factor, plays an essential role in the entire process of liver development. In this study, immortalized hBM-MSCs, UE7T-13 cells were transduced with a lentiviral vector containing HNF4α. The typical fibroblast-like morphology of the MSCs changed, and polygonal, epithelioid cells grew out after HNF4α transduction. In hepatocyte culture medium, HNF4α-transduced MSCs (E7-hHNF4α cells) strongly expressed the albumin (ALB), CYP2B6, alpha-1 antitrypsin (AAT), and FOXA2 mRNA and exhibited morphology markedly similar to that of mature hepatocytes. The E7-hHNF4α cells showed hepatic functions such as Indocyanine green (ICG) uptake and release, glycogen storage, urea production and ALB secretion. Approximately 28% of E7-hHNF4α cells expressed both ALB and AAT. Furthermore, these E7-hHNF4α cells via superior mesenteric vein (SMV) injection expressed human ALB in mouse chronic injured liver. In conclusion, this study represents a novel strategy by directly inducing hepatocyte-like cells from MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/terapia , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Hepatócitos/transplante , Células-Tronco Mesenquimais/metabolismo , Albuminas/genética , Albuminas/metabolismo , Animais , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Murinos , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem Celular Transformada , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicogênio/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transdução Genética , Ureia/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
12.
Mamm Genome ; 27(1-2): 70-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547557

RESUMO

Most common diseases are attributed to multiple genetic variants, and the feasibility of identifying inherited risk factors is often restricted to the identification of alleles with high or intermediate effect sizes. In our previous studies, we identified single loci associated with hepatic fibrosis (Hfib1-Hfib4). Recent advances in analysis tools allowed us to model loci interactions for liver fibrosis. We analysed 322 F2 progeny from an intercross of the fibrosis-susceptible strain BALB/cJ and the resistant strain FVB/NJ. The mice were challenged with carbon tetrachloride (CCl4) for 6 weeks to induce chronic hepatic injury and fibrosis. Fibrosis progression was quantified by determining histological fibrosis stages and hepatic collagen contents. Phenotypic data were correlated to genome-wide markers to identify quantitative trait loci (QTL). Thirteen susceptibility loci were identified by single and composite interval mapping, and were included in the subsequent multiple QTL model (MQM) testing. Models provided evidence for susceptibility loci with strongest association to collagen contents (chromosomes 1, 2, 8 and 13) or fibrosis stages (chromosomes 1, 2, 12 and 14). These loci contained the known fibrosis risk genes Hc, Fasl and Foxa2 and were incorporated in a fibrosis network. Interestingly the hepatic fibrosis locus on chromosome 1 (Hfib5) connects both phenotype networks, strengthening its role as a potential modifier locus. Including multiple QTL mapping to association studies adds valuable information on gene-gene interactions in experimental crosses and human cohorts. This study presents an initial step towards a refined understanding of profibrogenic gene networks.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Predisposição Genética para Doença , Cirrose Hepática/genética , Modelos Genéticos , Locos de Características Quantitativas , Alelos , Animais , Tetracloreto de Carbono , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Quimera , Mapeamento Cromossômico , Cromossomos de Mamíferos , Colágeno/genética , Colágeno/metabolismo , Cruzamentos Genéticos , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo
13.
Liver Int ; 35(4): 1324-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25417901

RESUMO

BACKGROUND & AIMS: MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS: MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS: Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION: Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.


Assuntos
Hepatite B Crônica/genética , Hepatite C Crônica/genética , Fígado/metabolismo , MicroRNAs/genética , Animais , Antígenos CD , Caderinas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/metabolismo , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Índice de Gravidade de Doença , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
14.
Environ Pollut ; 331(Pt 2): 121887, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236586

RESUMO

Cadmium is an environmental pollutant that has extensive deleterious effects. However, the mechanisms underlying the hepatotoxicity induced by long-term exposure to cadmium remained undefined. In the present study, we explored the role of m6A methylation in the development of cadmium-induced liver disease. We showed a dynamic change of RNA methylation in liver tissue from mice administrated with cadmium chloride (CdCl2) for 3, 6 and 9 months, respectively. Particularly, the METTL3 expression was declined in a time-dependent manner, associated with the degree of liver injury, indicating the involvement of METTL3 in hepatotoxicity induced by CdCl2. Moreover, we established a mouse model with liver-specific over-expression of Mettl3 and administrated these mice with CdCl2 for 6 months. Notably, METTL3 highly expressed in hepatocytes attenuated CdCl2-induced steatosis and liver fibrosis in mice. In vitro assay also showed METTL3 overexpression ameliorated the CdCl2-induced cytotoxicity and activation of primary hepatic stellate cells. Furthermore, transcriptome analysis identified 268 differentially expressed genes both in mice liver tissue treated with CdCl2 for 3 months and 9 months. Among them, 115 genes were predicted to be regulated by METTL3 determined by m6A2Target database. Further analysis revealed the perturbation of metabolic pathway, glycerophospholipid metabolism, ErbB signaling pathway, Hippo signaling pathway, and choline metabolism in cancer, and circadian rhythm, led to hepatotoxicity induced by CdCl2. Collectively, our findings reveal new insight into the crucial role of epigenetic modifications in hepatic diseases caused by long-term exposure to cadmium.


Assuntos
Cádmio , Doença Hepática Crônica Induzida por Substâncias e Drogas , Metiltransferases , Animais , Camundongos , Cádmio/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Hepatócitos , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo
15.
Sci Rep ; 13(1): 6528, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085612

RESUMO

Irinotecan is a topoisomerase I inhibitor which has been widely used to combat several solid tumors, whereas irinotecan therapy can induce liver injury. Liver injury generally leads to tissue hypoxia, and hypoxia-inducible factor-1α (HIF-1α), a pivotal transcription factor, mediates adaptive pathophysiological responses to lower oxygen condition. Previous studies have reported a relationship between HIF-1α and autophagy, and autophagy impairment is a common characteristic in a variety of diseases. Here, irinotecan (50 mg/kg) was employed on mice, and HepG2 and L-02 cells were cultured with irinotecan (10, 20 and 40 µM). In vivo study, we found that irinotecan treatment increased final liver index, serum aminotransferase level and hepatic lipid accumulation. Impaired autophagic flux and activation of HIF-1α/BNIP3 pathway were also demonstrated in the liver of irinotecan-treated mice. Moreover, irinotecan treatment significantly deteriorated hepatic oxidative stress, evidenced by increased MDA and ROS contents, as well as decreased GSH-Px, SOD and CAT contents. Interestingly, protein levels of NLRP3, cleaved-caspase 1 and IL-1ß were enhanced in the liver of mice injected with irinotecan. In vitro study, irinotecan-treated HepG2 and L-02 cells also showed impaired autophagic flux, while HIF-1α inhibition efficaciously removed the accumulated autophagosomes induced by irinotecan. Additionally, irinotecan treatment aggravated lipid accumulation in HepG2 and L-02 cells, and HIF-1α inhibition reversed the effect of irinotecan. Furthermore, HIF-1α inhibition weakened irinotecan-induced NLRP3 inflammasome activation in HepG2 cells. Taken together, our results suggest that irinotecan induces liver injury by orchestrating autophagy via HIF-1α/BNIP3 pathway, and HIF-1α inhibition could alleviate irinotecan-induced lipid accumulation in HepG2 and L-02 cells, which will provide a new clue and direction for the prevention of side effects of clinical chemotherapy drugs.


Assuntos
Autofagia , Doença Hepática Crônica Induzida por Substâncias e Drogas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metabolismo dos Lipídeos , Animais , Camundongos , Autofagia/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Irinotecano/toxicidade , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
16.
J Cell Physiol ; 227(4): 1538-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21678408

RESUMO

We investigated whether transplantation of purified human peripheral blood CD34(+) cells could reduce established liver fibrosis and up-regulate therapeutic regeneration. Human peripheral blood CD34(+) cells were isolated from total mononuclear cells of healthy volunteers by magnetic cell sorting. Recipient nude rats were injected intraperitoneally with carbon tetrachloride (CCl(4)) twice weekly for 3 weeks before single administration of CD34(+) cells. CCl(4) was then re-administered twice weekly for 3 more weeks, and the nude rats were sacrificed. Saline (control group), 1 × 10(5) (low-dose group), 5 × 10(5) (middle-dose group), or 2 × 10(6) (high-dose group) CD34(+) cells/kg body weight were intrasplenically transplanted after CCl(4) treatment for 3 weeks. Reverse transcriptase-polymerase chain reaction analysis of the freshly isolated CD34(+) cells revealed the expression of CD31, keratin19, α-smooth muscle actin (α-SMA), and epithelial growth factor, but not other liver related markers. The transplanted cells differentiated into vascular and sinusoidal endothelial cells, and vascular smooth muscle cells. CD34(+) cell transplantation reduced liver fibrosis in a dose-dependent fashion, with decreased collagen type-I and α-SMA-positive cells after 6 weeks of CCl(4) treatment by Mallory's Azan and immunohistochemical staining. Gelatin zymography showed that the expression levels of active matrix metalloproteinase-2 and -9 in CD34(+) cell transplanted livers were significantly stronger than those in saline-infused livers. In recipients of high-doses of CD34(+) cells, the number of PCNA-positive hepatocyte increased 6 weeks after CCl(4) treatment compared with saline-infused livers. We conclude that human peripheral blood CD34(+) cell transplantation halts established liver fibrosis and promotes hepatic regeneration in CCl(4)-induced chronic liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/terapia , Regeneração Hepática , Transplante de Células-Tronco de Sangue Periférico , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Tetracloreto de Carbono/toxicidade , Diferenciação Celular , Sobrevivência Celular , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Primers do DNA/genética , Células Endoteliais/patologia , Expressão Gênica , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Masculino , Miócitos de Músculo Liso/patologia , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Transplante Heterólogo
17.
Lab Invest ; 92(6): 857-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22449798

RESUMO

Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Queratina-18/genética , Queratina-8/genética , Corpos de Mallory/patologia , Proteínas/genética , Piridinas/toxicidade , Doença Aguda , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Queratina-18/metabolismo , Queratina-8/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Corpos de Mallory/efeitos dos fármacos , Corpos de Mallory/metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão , Proteínas/metabolismo
18.
Cell Cycle ; 21(24): 2635-2650, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35957539

RESUMO

Liver injury from any number of causes (e.g. chemical material, drugs and diet, viral infection) is a global health problem, and its mechanism is not clearly understood. MicroRNAs (miRNAs) expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and have also shown promise as biomarkers for disease. Previous studies reported the regulation effects of miRNAs in liver injury, whereas function and molecular mechanisms of miR-322-5p were still unclear. Therefore, our study focused on the biological role of miR-322-5p in carbon tetrachloride (CCl4)-induced liver injury proliferation, apoptosis, and cell cycle. A mouse model of CCl4-induced liver injury was established, and the transcriptomes and miRNAs transcriptomes of 2d and 5d liver tissues after injury were sequenced. The expression of miR-322-5p and the cell cycle genes were detected in liver tissues and Hepa1-6 cell line by miRNA RT-PCR, qRT-PCR. The effects of miR-322-5p on liver cell proliferation, cell cycle and apoptosis were evaluated using MTS assays and flow cytometry analysis. The relationship between miR-322-5p and Wee1 was predicted and confirmed by bioinformatics analysis and a dual luciferase reporter assay. Functional experiments, including an MTS assay and flow cytometric analysis, were performed to study the effects of Wee1. MiR-322-5p was upregulated in injury liver tissues, and downregulated miR-322-5p was proved to inhibit proliferation, apoptosis and arrest cell cycle at G2/M in vitro. The dual-luciferase reporter assay results indicated that miR-322-5p has a binding site at position 285 in the Wee1 3´UTR. The effects of miR-322-5p in proliferation and cell cycle regulation can be abolished by Wee1 through rescue experiments. By directly targeting Wee1 influenced the expression of several cell cycle factors, including Cyclin dependent kinase 1 (Cdk1), cyclin B1 (Ccnb1) and Cell division cyclin 25C (Cdc25C). MiR-322-5p may function as a suppressive factor by negatively controlling Wee1, thus, highlighting the potential role of miR-322-5p as a therapeutic target for liver injury.Abbreviations: ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione, γ-glutamyl cysteinel + glycine; CCl4: Carbon tetrachloride; HE: Haematoxylin and eosin; KEGG: Kyoto Encyclopedia of Genes and Genomes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , MicroRNAs , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Tetracloreto de Carbono/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclo Celular/genética , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Divisão Celular
19.
J Agric Food Chem ; 70(45): 14414-14426, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318656

RESUMO

The liver is the major organ of metabolism and is extremely vulnerable to chronic stress. Lycopene (LYC) is a natural carotenoid with potent antioxidant and chronic disease potential. However, whether LYC protects against chronic restraint stress (CRS)-induced liver injury and the underlying mechanisms remain unclear. In this study, rats were restrained for 21 days for 6 h per day, with or without gavage of LYC (10 mg/kg). Serum ALT (85.99 ± 4.07 U/L) and AST (181.78 ± 7.35 U/L) and scores of liver injury were significantly increased in the CRS group. LYC significantly promoted the nuclear translocation of Nrf2, elevated the expression of antioxidant genes, and attenuated reactive oxygen radicals (ROS) levels within the liver. Cellular thermal shift assay (CETSA) and molecular docking results indicated that LYC competitively binds to Keap1 with the lowest molecule affinity of -9.0 kcal/mol. Moreover, LYC significantly relieved the hepatic endoplasmic reticulum swelling and decreased the expression of endoplasmic reticulum stress (ERS) hallmarks like GRP78, CHOP, and cleaved caspase-12. Meanwhile, LYC also mitigated CRS-induced hepatocyte apoptosis. Interestingly, every other day, the intraperitoneal injection of the Nrf2 inhibitor brusatol (0.4 mg/kg) significantly counteracted the protective effect of LYC. In conclusion, LYC protects against CRS-induced liver injury by activating the Nrf2 signaling pathway, scavenging ROS, and further attenuating ERS-associated apoptosis pathways.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Licopeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse do Retículo Endoplasmático , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Estresse Oxidativo , Apoptose
20.
Nutrients ; 13(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34444698

RESUMO

Maintaining lipid homeostasis is crucial to liver function, the key organ that governs the whole-body energy metabolism. In contrast, lipid dysregulation has been implicated in mycotoxin-induced liver injury, by which the pathophysiological regulation and the molecular components involved remain elusive. Here we focused on the potential roles of orphan nuclear receptor (NR) RORγ in lipid programming, and aimed to explore its action on cholesterol regulation in the liver of mycotoxin-exposed piglets. We found that liver tissues were damaged in the mycotoxin-exposed piglets compared to the healthy controls, revealed by histological analysis, elevated seral ALT, AST and ALP levels, and increased caspase 3/7 activities. Consistent with the transcriptomic finding of down-regulated cholesterol metabolism, we demonstrated that both cholesterol contents and cholesterol biosynthesis/transformation gene expressions in the mycotoxin-exposed livers were reduced, including HMGCS1, FDPS, SQLE, EBP, FDFT1 and VLDLR. Furthermore, we reported that RORγ binds to the cholesterol metabolic genes in porcine hepatocytes using a genome-wide ChIP-seq analysis, whereas mycotoxin decreased the RORγ binding occupancies genome-wide, especially at the cholesterol metabolic pathway. In addition, we revealed the enrichment of co-factors p300 and SRC, the histone marks H3K27ac and H3K4me2, together with RNA Polymerase II (Pol-II) at the locus of HMGCS1 in hepatocytes, which were reduced by mycotoxin-exposure. Our results provide a deep insight into the cholesterol metabolism regulation during mycotoxin-induced liver injury, and propose NRs as therapeutic targets for anti-mycotoxin treatments.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Colesterol/genética , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Homeostase/genética , Fígado/metabolismo , Micotoxinas/toxicidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA