Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458546

RESUMO

Intervertebral disc (IVD) degeneration is the primary cause of back pain in humans. However, the cellular and molecular pathogenesis of IVD degeneration is poorly understood. This study shows that zebrafish IVDs possess distinct and non-overlapping zones of cell proliferation and cell death. We find that, in zebrafish, cellular communication network factor 2a (ccn2a) is expressed in notochord and IVDs. Although IVD development appears normal in ccn2a mutants, the adult mutant IVDs exhibit decreased cell proliferation and increased cell death leading to IVD degeneration. Moreover, Ccn2a overexpression promotes regeneration through accelerating cell proliferation and suppressing cell death in wild-type aged IVDs. Mechanistically, Ccn2a maintains IVD homeostasis and promotes IVD regeneration by enhancing outer annulus fibrosus cell proliferation and suppressing nucleus pulposus cell death through augmenting FGFR1-SHH signaling. These findings reveal that Ccn2a plays a central role in IVD homeostasis and regeneration, which could be exploited for therapeutic intervention in degenerated human discs.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Comunicação Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Hedgehog/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Am J Pathol ; 194(2): 280-295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981220

RESUMO

In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Núcleo Pulposo/metabolismo , RNA Mensageiro/metabolismo , Apoptose/genética
3.
Am J Pathol ; 194(9): 1737-1751, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879082

RESUMO

This study investigated the role of apoptosis signal-regulated kinase-1 (ASK1) in intervertebral disc degeneration (IDD). The nucleus pulposus (NP) tissues of non-IDD and IDD patients were subjected to hematoxylin and eosin, Safranin O-fast green, and immunohistochemical staining. Quantitative real-time PCR was used to assess the ASK1 mRNA level within NP tissue samples and cells. The Cell Counting Kit-8 assay, senescence-associated ß-galactosidase staining, and flow cytometry were conducted to assess the viability, senescence, and apoptosis of NP cells, respectively. Extracellular matrix-related factors were detected using Western blot analysis. Furthermore, the effect of ASK1 on the IDD rat model was evaluated. Finally, c-Jun N-terminal kinase (JNK) inhibitors were used to verify the effect of the JNK/p38 signaling on IDD. ASK1 mRNA and protein were up-regulated within NP tissue samples from the IDD group, IL-1ß-stimulated NP cells, and IDD rats. ASK1 inhibition promoted cell viability and repressed the senescence and apoptosis of NP cells, promoted collagen II and aggrecan, inhibited matrix metalloproteinase 3/9 and a disintegrin and metalloproteinase with thrombospondin motifs 4/5 protein levels, and increased NP cells in rat intervertebral disc tissues. ASK1 overexpression exerted the opposite effects of ASK1 inhibition on NP cells. Additionally, JNK/p38 signaling suppression could reverse the ASK1 up-regulation-induced dysfunction. In conclusion, ASK1 facilitated the senescence and apoptosis of NP cells in promoting IDD progression via the JNK/p38 pathway.


Assuntos
Apoptose , Senescência Celular , Degeneração do Disco Intervertebral , MAP Quinase Quinase Quinase 5 , Núcleo Pulposo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Senescência Celular/fisiologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo
4.
FASEB J ; 38(1): e23363, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085183

RESUMO

Intervertebral disc degeneration is a leading cause of chronic low back pain. Cell-based strategies that seek to treat disc degeneration by regenerating the central nucleus pulposus (NP) hold significant promise, but key challenges remain. One of these is the inability of therapeutic cells to effectively mimic the performance of native NP cells, which are unique amongst skeletal cell types in that they arise from the embryonic notochord. In this study, we use single cell RNA sequencing to demonstrate emergent heterogeneity amongst notochord-derived NP cells in the postnatal mouse disc. Specifically, we established the existence of progenitor and mature NP cells, corresponding to notochordal and chondrocyte-like cells, respectively. Mature NP cells exhibited significantly higher expression levels of extracellular matrix (ECM) genes including aggrecan, and collagens II and VI, along with elevated transforming growth factor-beta and phosphoinositide 3 kinase-protein kinase B signaling. Additionally, we identified Cd9 as a novel surface marker of mature NP cells, and demonstrated that these cells were localized to the NP periphery, increased in numbers with increasing postnatal age, and co-localized with emerging glycosaminoglycan-rich matrix. Finally, we used a goat model to show that Cd9+ NP cell numbers decrease with moderate severity disc degeneration, suggesting that these cells are associated with maintenance of the healthy NP ECM. Improved understanding of the developmental mechanisms underlying regulation of ECM deposition in the postnatal NP may inform improved regenerative strategies for disc degeneration and associated low back pain.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Camundongos , Animais , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Notocorda/metabolismo , Dor Lombar/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Sequência de RNA
5.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740166

RESUMO

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Fatores Inibidores da Migração de Macrófagos , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Ratos , Masculino , Humanos , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Adulto , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo
6.
Mol Ther ; 32(8): 2563-2583, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38879755

RESUMO

The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.


Assuntos
Desdiferenciação Celular , Reprogramação Celular , Degeneração do Disco Intervertebral , Notocorda , Núcleo Pulposo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/patologia , Animais , Reprogramação Celular/genética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Notocorda/metabolismo , Notocorda/citologia , Humanos , Modelos Animais de Doenças , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Análise de Célula Única , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Células Cultivadas
7.
Cell Mol Life Sci ; 81(1): 24, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212432

RESUMO

The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Disco Intervertebral/metabolismo , Senescência Celular
8.
Am J Physiol Cell Physiol ; 326(2): C386-C399, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105759

RESUMO

Nucleus pulposus cell (NPC) senescence is a major cause of intervertebral disc degeneration (IVDD). Oxidative stress and reactive oxygen species (ROS) play critical roles in regulating cell senescence. Selenophosphate synthetase 1 (SEPHS1) was reported to play an important role in mitigating oxidative stress in an osteoarthritis (OA) model by reducing the production of ROS, thereby, delaying the occurrence and development of osteoarthritis. In this study, we explored the, hitherto unknown, role of SEPHS1 in IVDD in vitro and in vivo using an interleukin-1ß (IL-1ß)-induced NPC senescence model and a rat needle puncture IVDD model, respectively. SEPHS1 delayed NPC senescence in vitro by reducing ROS production. Age-related dysfunction was also ameliorated by the overexpression of SEPHS1 and inhibition of the Hippo-Yap/Taz signaling pathway. In vivo experiments revealed that the overexpression of SEPHS1 and inhibition of Hippo-Yap/Taz alleviated IVDD in rats. Moreover, a selenium (Se)-deficient diet and lack of SEPHS1 synergistically aggravated IVDD progression. Taken together, our results demonstrate that SEPHS1 plays a significant role in NPC senescence. Overexpression of SEPHS1 and inhibition of Hippo-Yap/Taz can delay NPC senescence, restore the balance of extracellular matrix metabolism, and attenuate IVDD. SEPHS1 could be a promising therapeutic target for IVDD.NEW & NOTEWORTHY Selenophosphate synthetase 1 (SEPHS1) deficiency leads to an increase in reactive oxygen species levels and in the subsequent activation of the Hippo-Yap/Taz signaling pathway. In the rat model of intervertebral disc degeneration (IVDD), overexpression of SEPHS1 and inhibition of Hippo-YAP/Taz mitigated the progression of disc degeneration indicating the involvement of SEPHS1 in IVDD. SEPHS1 is a promising therapeutic target for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Osteoartrite , Ratos , Animais , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular , Osteoartrite/metabolismo
9.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690917

RESUMO

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Assuntos
Agrecanas , Matriz Extracelular , Proteínas Fetais , Regulação da Expressão Gênica , Núcleo Pulposo , Proteína Smad3 , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Agrecanas/metabolismo , Agrecanas/genética , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Matriz Extracelular/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Proteína Smad3/metabolismo , Proteína Smad3/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
10.
Am J Physiol Cell Physiol ; 327(2): C237-C253, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853649

RESUMO

Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.


Assuntos
Apoptose , Proteína 7 Relacionada à Autofagia , Autofagia , Senescência Celular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos Sprague-Dawley , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Autofagia/efeitos dos fármacos , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Animais , Senescência Celular/efeitos dos fármacos , Humanos , Ratos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Células Cultivadas
11.
J Cell Mol Med ; 28(2): e18054, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009813

RESUMO

This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Ratos , Animais , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Efrina-A3 , Agrecanas/genética , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Apoptose/genética , Colágeno/metabolismo , Disco Intervertebral/metabolismo
12.
J Cell Mol Med ; 28(12): e18492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890795

RESUMO

Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.


Assuntos
Fator 3 Ativador da Transcrição , Ferroptose , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Ratos , Ferroptose/genética , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Análise de Célula Única/métodos , Apoptose/genética , Transdução de Sinais , Feminino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Análise de Sequência de RNA/métodos , Matriz Extracelular/metabolismo , Adulto , Regulação da Expressão Gênica , Modelos Animais de Doenças , Biologia Computacional/métodos
13.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544414

RESUMO

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Assuntos
Degeneração do Disco Intervertebral , Receptores de IgG , Animais , Perfilação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratos , Receptores de IgG/metabolismo
14.
J Cell Physiol ; 239(5): e31219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345407

RESUMO

Mechanical environment worsening is an important predisposing factor that accelerates intervertebral disc degeneration (IDD), but its specific regulatory mechanisms remain unclear. In this study, we reveal the molecular mechanisms of WTAP/YTHDF2-mediated m6A modification in abnormal stress-induced intervertebral disc (IVD) matrix degradation. WTAP expression in human nucleus pulposus cells was elevated under tension. Similarly, high WTAP expression was detected in severe degenerated human and rat nucleus pulposus tissues. Functionally, WTAP was found to increase the TIMP3 transcript methylation level under tension, resulting in YTHDF2 recognition, binding, and induction of its degradation. Reduction in TIMP3 caused increases in active matrix metalloproteinases, ultimately inducing extracellular matrix degradation in nucleus pulposus cells. Macroscopically, this promotes IDD. Additionally, in vitro and in vivo inhibition of WTAP expression or TIMP3 overexpression significantly increased stress resistance in the nucleus pulposus, thereby alleviating IDD. Our results show that abnormal stress disrupts IVD matrix stability through WTAP/YTHDF2-dependent TIMP3 m6A modification.


Assuntos
Adenosina , Proteínas de Ciclo Celular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-3 , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Adenosina/análogos & derivados , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
16.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35722742

RESUMO

Intervertebral disc degeneration (IVDD) is a complex process involving many factors, among which excessive senescence of nucleus pulposus cells is considered to be the main factor. Our previous study found that metformin can inhibit senescence in nucleus pulposus cells; however, the mechanism of such an action was still largely unknown. In the current study, we found that metformin inactivates the cGAS-STING pathway during oxidative stress. Furthermore, knockdown of STING (also known as STING1) suppresses senescence, indicating that metformin might exert its effect through the cGAS-STING pathway. Damaged DNA is a major inducer of the activation of the cGAS-STING pathway. Mechanistically, our study showed that DNA damage was reduced during metformin treatment; however, suppression of autophagy by 3-methyladenine (3-MA) treatment compromised the effect of metformin on DNA damage. In vivo studies also showed that 3-MA might diminish the therapeutic effect of metformin on IVDD. Taken together, our results reveal that metformin may suppress senescence via inactivating the cGAS-STING pathway through autophagy, implying a new application for metformin in cGAS-STING pathway-related diseases.


Assuntos
Degeneração do Disco Intervertebral , Metformina , Núcleo Pulposo , Autofagia/fisiologia , Senescência Celular/fisiologia , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteínas de Membrana , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Núcleo Pulposo/metabolismo
17.
Am J Pathol ; 193(7): 960-976, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088454

RESUMO

Intervertebral disc (IVD) degeneration (IVDD) is usually accompanied by nucleus pulposus (NP) fibrosis and pathologic angiogenesis, which are possibly associated with macrophage infiltration. Previous research indicates a destructive role of macrophages and the protective effect of inhibiting heat shock protein 90 (HSP90) in IVDD. Herein, the effects of inhibiting HSP90 on NP fibrosis and pathologic angiogenesis induced by macrophages were investigated further. Single-cell RNA-sequencing analysis was used to classify fibrotic NP cell (NPC) clusters and healthy NPC clusters in human NP tissues. The fibrotic NPC clusters were possibly associated with angiogenesis-related biological processes. Immunostaining showed the spatial association between blood vessel ingrowth and macrophage infiltration, as well as elevated levels of cell migration-inducing protein (CEMIP) and vascular endothelial growth factor A in severely degenerated human IVD tissues. Particularly, HSP90 inhibitor tanespimycin (17-AAG) ameliorated macrophage-induced fibrotic phenotype of NPCs via inhibiting CEMIP. M2, but not M1, macrophages promoted the pro-angiogenic ability of endothelial cells, which was attenuated by 17-AAG or HSP90 siRNA. Reversing the fibrotic phenotype of NPCs by Cemip siRNA also mitigated the pro-angiogenic effects of M2-conditioned medium-treated NPCs. Moreover, the murine IVDD model supported the 17-AAG-induced amelioration of NP fibrosis and endothelial cell invasion in IVD tissues. In conclusion, inhibiting HSP90 attenuated two interrelated pathologic processes, NP fibrosis and pathologic angiogenesis, induced by macrophages via down-regulating CEMIP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Núcleo Pulposo/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Movimento Celular , Proteínas de Choque Térmico , Neovascularização Patológica/patologia , Macrófagos/metabolismo , Fibrose , RNA Interferente Pequeno/metabolismo
18.
Osteoarthritis Cartilage ; 32(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802465

RESUMO

OBJECTIVE: This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS: Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS: Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS: Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Apoptose , Modelos Animais de Doenças , Macrófagos/metabolismo
19.
Osteoarthritis Cartilage ; 32(2): 187-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717904

RESUMO

OBJECTIVE: Examine the mechanism by which advanced glycation end products (AGEs) induce intervertebral disc degeneration (IDD) in C57BL/6J mice. METHODS: Matrix metallopeptidase (MMP) gene mRNA levels were assessed using RT-qPCR. Immunoprecipitation and co-immunoprecipitation were performed to identify the transcriptional complex regulating MMP expression due to AGEs. The preventive effects of inhibitors targeting this complex were tested in mice on high AGE diets. RESULTS: IDD and AGE accumulation were evident in mice on high-AGE diets (HAGEs), persisting across dietary shifts but absent in mice exclusively on low-AGE diets. Molecularly, HAGEs activated p21-activated kinase 1 (PAK1), prompting peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PPRC1) phosphorylation. Ubiquitin-specific protease 12 (USP12) interacted with the phosphorylated PPRC1 (pPPRC1), safeguarding it from proteasomal degradation. This pPPRC1, in collaboration with two histone acetyltransferases p300/CREB-binding protein (CBP) and a transcription factor activator protein 1(AP1), enhanced the expression of 12 MMP genes (MMP1a/1b/3/7/9/10/12/13/16/19/23/28). In vitro AGE exposure on nucleus pulposus and annulus fibrosus cells replicated this gene activation pattern, driven by the PAK1/pPPRC1-p300/CBP-AP1 pathway. The application of PAK1, p300, and AP1 inhibitors reduced pPPRC1-p300/CBP-AP1 binding to MMP promoters, diminishing their expression. These inhibitors effectively thwarted IDD in HAGE mice. CONCLUSION: Our results revealed that HAGEs instigate IDD via the PAK1/pPPRC1-p300/CBP-AP1 signaling pathway. This insight can guide therapeutic strategies to slow IDD progression in prediabetic/diabetic patients.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Ativação Transcricional , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Metaloproteases/metabolismo , Disco Intervertebral/metabolismo
20.
Osteoarthritis Cartilage ; 32(10): 1245-1260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38744373

RESUMO

OBJECTIVE: Intervertebral Disc Degeneration (IVDD) is one of the leading causes of low back pain, significantly impacting both individuals and society. This study aimed to investigate the significance of macrophage infiltration and the role of macrophage-secreted platelet-derived growth factor-BB (PDGF-BB) in IVDD progression. METHODS: To confirm the protective function of macrophage-derived PDGF-BB on nucleus pulposus cells (NPCs), we employed Lysm-Cre transgenic mice to genetically ablate PDGF-B within the myeloid cells. Immunohistochemistry was utilized to detect the expression of glycolytic enzymes and pyroptosis-related proteins during the process of IVDD. Western blot, RT-PCR, ELISA and immunofluorescence were used to detect the protective effect of recombinant PDGF-BB on NPCs. RESULTS: Macrophage-derived PDGF-BB deficiency resulted in the loss of NPCs and the increased ossification of cartilage endplates during lumbar disc degeneration. Also, PDGF-BB deficiency triggered the inhibition of glycolytic enzymes' expression and the activation of pathways related to pyroptosis in the nucleus pulposus. Mechanistically, our results suggest that PDGF-BB predominantly conveys its protective influence on NPCs through the PDGF receptor- beta (PDGFR-ß)/ thioredoxin-interacting protein pathway. CONCLUSIONS: The absence of PDGF-BB originating from macrophages expedites the advancement of IVDD, whereas the application of PDGF-BB treatment holds the potential for retarding intervertebral disc degeneration in the human body.


Assuntos
Becaplermina , Glicólise , Degeneração do Disco Intervertebral , Macrófagos , Camundongos Transgênicos , Núcleo Pulposo , Piroptose , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Becaplermina/farmacologia , Macrófagos/metabolismo , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA