Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372965

RESUMO

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Assuntos
Cardiomiopatias , Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Lipidômica , Doenças Mitocondriais , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Doenças Mitocondriais/diagnóstico , Carnitina , Cisteamina , Lipídeos
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732138

RESUMO

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Assuntos
Proteína Mitocondrial Trifuncional/deficiência , Proteína Multifuncional do Peroxissomo-2 , Humanos , Proteína Multifuncional do Peroxissomo-2/deficiência , Proteína Multifuncional do Peroxissomo-2/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Recém-Nascido , Lactente , Masculino , Feminino , Sequenciamento do Exoma , Mutação da Fase de Leitura , 17-Hidroxiesteroide Desidrogenases/deficiência , 17-Hidroxiesteroide Desidrogenases/genética , Região de Recursos Limitados , Miopatias Mitocondriais , Cardiomiopatias , Doenças do Sistema Nervoso , Rabdomiólise
3.
Am J Med Genet A ; 188(6): 1848-1852, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199468

RESUMO

This is the first report of the concurrent development of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and Crigler-Najjar syndrome type 1 (CNs1) inherited via uniparental disomy of chromosome 2, which are both autosomal recessive pathologies. Through an expanded newborn metabolic panel, a male infant was identified as having an acylcarnitine pattern typical for LCHADD, later confirmed to be caused by a well-characterized pathogenic variant in the HADHA gene located at 2p23. Prolonged non-hematologic jaundice requiring repetitive phototherapy prompted further genetic analysis, leading to the identification of another genetic abnormality consistent with CNs1, which was caused by a novel pathogenic variant in the UGT1A1 gene located at 2q37. The two identified point mutations in chromosome 2 were homozygous and present on separate arms, which indicated potential uniparental disomy. Microarray analysis of the genetic material from the patient and his parents confirmed paternal isodisomy of chromosome 2. Further studies are needed to identify other possible pathogenic variants located on the same defective chromosome, evaluate the combined effect of the two metabolic abnormalities, and plan the best possible treatment and care.


Assuntos
Síndrome de Crigler-Najjar , Cardiomiopatias , Cromossomos Humanos Par 2/genética , Síndrome de Crigler-Najjar/genética , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico , Masculino , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Rabdomiólise , Dissomia Uniparental/genética
4.
Am J Med Genet A ; 188(10): 2908-2919, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856138

RESUMO

ECHS1 gene encodes a mitochondrial enzyme, short-chain enoyl-CoA hydratase (SCEH). SCEH is involved in fatty acid oxidation ([Sharpe and McKenzie (2018); Mitochondrial fatty acid oxidation disorders associated with short-chain enoyl-CoA hydratase (ECHS1) deficiency, 7: 46]) and valine catabolism ([Fong and Schulz (1977); Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues, 252: 542-547]; [Wanders et al. (2012); Enzymology of the branched-chain amino acid oxidation disorders: The valine pathway, 35: 5-12]), and the dysfunction of SCEH leads to a severe Leigh or Leigh-like Syndrome phenotype in patients ([Haack et al. (2015); Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement, 2: 492-509]; [Peters et al. (2014); ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism, 137: 2903-2908]; [Sakai et al. (2015); ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome, 36: 232-239]; [Tetreault et al. (2015); Whole-exome sequencing identifies novel ECHS1 mutations in Leigh, 134: 981-991]). This study aims to further describe the ECHS1 deficiency phenotype using medical history questionnaires and standardized tools assessing quality of life and adaptive skills. Our findings in this largest sample of ECHS1 patients in literature to date (n = 13) illustrate a severely disabling condition causing severe developmental delays (n = 11), regression (n = 10), dystonia/hypotonia and movement disorders (n = 13), commonly with symptom onset in infancy (n = 10), classical MRI findings involving the basal ganglia (n = 11), and variability in biochemical profile. Congruent with the medical history, our patients had significantly low composite and domain scores on Vineland Adaptive Behavior Scales, Third Edition. We believe there is an increasing need for better understanding of ECHS1 deficiency with an aim to support the development of transformative genetic-based therapies, driven by the unmet need for therapies for patients with this genetic disease.


Assuntos
Doença de Leigh , Qualidade de Vida , Animais , Cardiomiopatias , Enoil-CoA Hidratase , Ácidos Graxos , Cobaias , Doença de Leigh/genética , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Fenótipo , Rabdomiólise , Valina/metabolismo
5.
J Inherit Metab Dis ; 45(4): 804-818, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383965

RESUMO

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is included in many newborn screening (NBS) programs. Acylcarnitine-based NBS for LCHADD not only identifies LCHADD, but also the other deficiencies of the mitochondrial trifunctional protein (MTP), a multi-enzyme complex involved in long-chain fatty acid ß-oxidation. Besides LCHAD, MTP harbors two additional enzyme activities: long-chain enoyl-CoA hydratase (LCEH) and long-chain ketoacyl-CoA thiolase (LCKAT). Deficiency of one or more MTP activities causes generalized MTP deficiency (MTPD), LCHADD, LCEH deficiency (not yet reported), or LCKAT deficiency (LCKATD). To gain insight in the outcomes of MTP-deficient patients diagnosed after the introduction of NBS for LCHADD in the Netherlands, a retrospective evaluation of genetic, biochemical, and clinical characteristics of MTP-deficient patients, identified since 2007, was carried out. Thirteen patients were identified: seven with LCHADD, five with MTPD, and one with LCKATD. All LCHADD patients (one missed by NBS, clinical diagnosis) and one MTPD patient (clinical diagnosis) were alive. Four MTPD patients and one LCKATD patient developed cardiomyopathy and died within 1 month and 13 months of life, respectively. Surviving patients did not develop symptomatic hypoglycemia, but experienced reversible cardiomyopathy and rhabdomyolysis. Five LCHADD patients developed subclinical neuropathy and/or retinopathy. In conclusion, patient outcomes were highly variable, stressing the need for accurate classification of and discrimination between the MTP deficiencies to improve insight in the yield of NBS for LCHADD. NBS allowed the prevention of symptomatic hypoglycemia, but current treatment options failed to treat cardiomyopathy and prevent long-term complications. Moreover, milder patients, who might benefit from NBS, were missed due to normal acylcarnitine profiles.


Assuntos
Cardiomiopatias , Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Rabdomiólise , 3-Hidroxiacil-CoA Desidrogenases , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Biologia Molecular , Triagem Neonatal , Doenças do Sistema Nervoso , Países Baixos , Estudos Retrospectivos , Rabdomiólise/diagnóstico , Rabdomiólise/genética
6.
J Inherit Metab Dis ; 45(4): 819-831, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403730

RESUMO

Mitochondrial trifunctional protein (MTP) is involved in long-chain fatty acid ß-oxidation (lcFAO). Deficiency of one or more of the enzyme activities as catalyzed by MTP causes generalized MTP deficiency (MTPD), long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), or long-chain ketoacyl-CoA thiolase deficiency (LCKATD). When genetic variants result in thermo-sensitive enzymes, increased body temperature (e.g. fever) can reduce enzyme activity and be a risk factor for clinical decompensation. This is the first description of five patients with a thermo-sensitive MTP deficiency. Clinical and genetic information was obtained from clinical files. Measurement of LCHAD and LCKAT activities, lcFAO-flux studies and palmitate loading tests were performed in skin fibroblasts cultured at 37°C and 40°C. In all patients (four MTPD, one LCKATD), disease manifested during childhood (manifestation age: 2-10 years) with myopathic symptoms triggered by fever or exercise. In four patients, signs of retinopathy or neuropathy were present. Plasma long-chain acylcarnitines were normal or slightly increased. HADHB variants were identified (at age: 6-18 years) by whole exome sequencing or gene panel analyses. At 37°C, LCHAD and LCKAT activities were mildly impaired and lcFAO-fluxes were normal. Remarkably, enzyme activities and lcFAO-fluxes were markedly diminished at 40°C. Preventive (dietary) measures improved symptoms for most. In conclusion, all patients with thermo-sensitive MTP deficiency had a long diagnostic trajectory and both genetic and enzymatic testing were required for diagnosis. The frequent absence of characteristic acylcarnitine abnormalities poses a risk for a diagnostic delay. Given the positive treatment effects, upfront genetic screening may be beneficial to enhance early recognition.


Assuntos
Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Doenças Musculares , 3-Hidroxiacil-CoA Desidrogenases , Adolescente , Cardiomiopatias , Criança , Pré-Escolar , Coenzima A , Diagnóstico Tardio , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças do Sistema Nervoso , Rabdomiólise
7.
Neuropediatrics ; 53(3): 213-216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35098523

RESUMO

BACKGROUND: Short-chain enoyl-CoA hydratase (ECHS1) deficiency is a rare metabolic disorder. Concerned patients present with Leigh syndrome symptoms or a Leigh-like syndrome. Only 58 patients are known worldwide. The ECHS1 is a key component in ß-oxidation and valine catabolic pathways. CASE: Here we report a 6-month-old Lebanese boy born to consanguineous parents. He presented an increased muscle tone, hyperexcitability, feeding problems, horizontal nystagmus, and developmental delay. Magnetic resonance imaging of the brain revealed frontal brain atrophy, corpus callosum atrophy, and T2 hyperintensity in pallidum, internal capsule, pons, and thalamus. In the postsedation phase, the patient displayed a sudden generalized seizure with transition to status epilepticus. Therefore, we conducted metabolic examinations, which showed elevated levels of 2-methyl-2,3-DiOH-butyrate and 3-methylglutaconate in urine. Single exome sequencing revealed the homozygous mutation c.476A > G in the ECHS1 gene. CONCLUSION: This case report describes the clinical symptoms and the diagnostics of ECHS1 deficiency. It shows the importance of further metabolic and genetic testing of patients with motoric conspicuities and developmental delay. It is important to be cautious with propofol sedation of patients who present an unknown neurological disorder, when metabolic disturbance or especially mitochondriopathy is suspected.


Assuntos
Doença de Leigh , Propofol , Estado Epiléptico , Atrofia , Cardiomiopatias , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Humanos , Lactente , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Erros Inatos do Metabolismo Lipídico , Masculino , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Propofol/efeitos adversos , Rabdomiólise , Estado Epiléptico/etiologia , Estado Epiléptico/genética
8.
Pediatr Phys Ther ; 34(4): 563-569, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044635

RESUMO

PURPOSE: The purpose of this case study is to describe the outpatient rehabilitation program for a 15-year-old girl with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). SUMMARY OF KEY POINTS: The child presented with sudden-onset muscle weakness and fatigue with resultant dependence for all mobility and self-care. After 12 months of therapy, which included aquatic interventions and robotic-assisted gait training, the patient demonstrated independence with transfers, ambulation with a rolling walker, and stair navigation. Functional mobility, gross motor skills, and participation in activities of daily living significantly improved per the Gross Motor Function Measure and the Pediatric Evaluation of Disability Inventory. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE: This is the first case in the literature to outline an outpatient physical therapy treatment plan to address mobility deficits secondary to exacerbation of LCHADD. This patient's rehabilitative course will hopefully add to future research and provide patients with guidelines for their recovery.


Assuntos
Atividades Cotidianas , Procedimentos Cirúrgicos Robóticos , Adolescente , Cardiomiopatias , Criança , Feminino , Marcha , Humanos , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Modalidades de Fisioterapia , Rabdomiólise
9.
Mol Genet Metab ; 133(1): 1-7, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744096

RESUMO

Mutations in the HADHB gene lead to Mitochondrial Trifunctional Protein (MTP) deficiency. MTP deficiency is a rare autosomal recessive disorder affecting long-chain fatty acid oxidation. Patients affected by MTP deficiency are unable to metabolize long-chain fatty-acids and suffer a variety of symptoms exacerbated during fasting. The three phenotypes associated with complete MTP deficiency are an early-onset cardiomyopathy and early death, an intermediate form with recurrent hypoketotic hypoglycemia and a sensorimotor neuropathy with episodic rhabdomyolysis with small amount of residual enzyme activities. This review aims to discuss the pathophysiological mechanisms and clinical manifestations of each phenotype, which appears different and linked to HADHB expression levels. Notably, the pathophysiology of the sensorimotor neuropathy is relatively unknown and we provide a hypothesis on the qualitative aspect of the role of acylcarnitine buildup in Schwann cells in MTP deficiency patients. We propose that acylcarnitine may exit the Schwann cell and alter membrane properties of nearby axons leading to axonal degeneration based on recent findings in different metabolic disorders.


Assuntos
Cardiomiopatias/genética , Erros Inatos do Metabolismo Lipídico/genética , Miopatias Mitocondriais/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Proteína Mitocondrial Trifuncional/deficiência , Proteína Mitocondrial Trifuncional/genética , Doenças do Sistema Nervoso/genética , Rabdomiólise/genética , Cardiomiopatias/patologia , Humanos , Erros Inatos do Metabolismo Lipídico/patologia , Miopatias Mitocondriais/patologia , Mutação/genética , Doenças do Sistema Nervoso/patologia , Fenótipo , Rabdomiólise/patologia
10.
J Inherit Metab Dis ; 44(4): 893-902, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638202

RESUMO

Peripheral neuropathy is a known irreversible long-term complication of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MTPD), two inherited disorders of mitochondrial long-chain fatty acid oxidation. The underlying pathophysiology of neuropathy is still not fully understood. We report electrophysiological studies and neurological findings in a series of 8 LCHAD-deficient and 11 MTP-deficient patients. The median age at time of the study was 8.0 years (0.5-25 years). The overall prevalence of neuropathy was 58% with neuropathic symptoms being slightly more common in MTPD compared to LCHADD (70% vs 50%, respectively). Onset of neuropathy was significantly earlier in MTPD patients compared to LCHADD patients (median age at onset 4.7 vs 15.3 years, respectively, P = .047). In four patients, isolated peripheral neuropathy was the first and only presenting symptom, and in all four the diagnosis was missed by newborn screening. About half of the patients (45.5%) had a sensorimotor neuropathy, while 27.3% showed a pure motor form and another 27.3% an isolated sensory form. Despite early diagnosis by newborn screening and early initiation of therapy, peripheral neuropathy cannot be prevented in all patients with LCHADD/MTPD and has severe impact on the life of affected patients. Electrophysiology classifies LCHADD/MTPD neuropathy as axonal with secondary demyelination. A novel observation is that in patients with acute, fulminant onset of neuropathy, symptoms can be partly reversible. Further studies are needed to elucidate the underlying pathophysiology of axonal damage and possible therapeutic targets.


Assuntos
Cardiomiopatias/complicações , Erros Inatos do Metabolismo Lipídico/complicações , Miopatias Mitocondriais/complicações , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/etiologia , Rabdomiólise/complicações , Adolescente , Adulto , Fatores Etários , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/patologia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Rabdomiólise/diagnóstico , Rabdomiólise/patologia , Adulto Jovem
11.
Doc Ophthalmol ; 142(3): 371-380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33392894

RESUMO

BACKGROUND: LCHAD (long-chain 3-hydroxyacyl-CoA dehydrogenase) deficiency is a rare genetic disorder of mitochondrial long-chain fatty acid oxidation inherited as a recessive trait. Affected patients can present with hypoglycaemia, rhabdomyolysis and cardiomyopathy. About half of the patients may suffer from retinopathy. CASE REPORT: A 19-year-old girl was diagnosed as suffering from LCHAD deficiency with recurrent rhabdomyolysis episodes at the age of 7 months by an inaugural coma with hypoglycaemia and hepatomegaly. Appropriate dietary management with carnitine supplementation was initiated. Retinopathy was diagnosed at age two. Ophthalmological assessments including visual acuity, visual field, OCT, flash ERGs, P-ERG, flash VEPs and EOG recordings were conducted over a 17-year period. RESULTS: Visual acuity was decreased. Fundi showed a progressive retinopathy and chorioretinopathy. Photophobia was noticed 2 years before the decrease in photopic-ERG amplitude with normal scotopic-ERGs. Scotopic-ERG amplitude decreased 10 years after the decrease in photopic-ERG amplitude. No EOG light rise was observed. Flash VEPs remained normal. These results suggest that the cone system dysfunction occurs largely prior to the rod system dysfunction with a relative preservation of the macula function. COMMENTS: This dysfunction of cones prior to the dysfunction of rods was not reported previously. This could be related to mitochondrial energy failure in cones as cones are greater consumers of ATP than rods. This hypothesis needs to be further confirmed as other long-chain fatty oxidation defective patients (VLCAD and CPT2 deficiencies) do not exhibit retinopathy.


Assuntos
Cardiomiopatias , Doenças Retinianas , Rabdomiólise , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenase , Adulto , Eletroculografia , Eletrorretinografia , Feminino , Humanos , Lactente , Erros Inatos do Metabolismo Lipídico , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Doenças Retinianas/diagnóstico , Regulador Transcricional ERG , Adulto Jovem
12.
Mol Genet Metab ; 131(1-2): 90-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32928639

RESUMO

BACKGROUND: The plasma acylcarnitine profile is frequently used as a biochemical assessment for follow-up in diagnosed patients with fatty acid oxidation disorders (FAODs). Disease specific acylcarnitine species are elevated during metabolic decompensation but there is clinical and biochemical heterogeneity among patients and limited data on the utility of an acylcarnitine profile for routine clinical monitoring. METHODS: We evaluated plasma acylcarnitine profiles from 30 diagnosed patients with long-chain FAODs (carnitine palmitoyltransferase-2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD), and long-chain 3-hydroxy acyl-CoA dehydrogenase or mitochondrial trifunctional protein (LCHAD/TFP) deficiencies) collected after an overnight fast, after feeding a controlled low-fat diet, and before and after moderate exercise. Our purpose was to describe the variability in this biomarker and how various physiologic states effect the acylcarnitine concentrations in circulation. RESULTS: Disease specific acylcarnitine species were higher after an overnight fast and decreased by approximately 60% two hours after a controlled breakfast meal. Moderate-intensity exercise increased the acylcarnitine species but it varied by diagnosis. When analyzed for a genotype/phenotype correlation, the presence of the common LCHADD mutation (c.1528G > C) was associated with higher levels of 3-hydroxyacylcarnitines than in patients with other mutations. CONCLUSIONS: We found that feeding consistently suppressed and that moderate intensity exercise increased disease specific acylcarnitine species, but the response to exercise was highly variable across subjects and diagnoses. The clinical utility of routine plasma acylcarnitine analysis for outpatient treatment monitoring remains questionable; however, if acylcarnitine profiles are measured in the clinical setting, standardized procedures are required for sample collection to be of value.


Assuntos
Cardiomiopatias/sangue , Carnitina O-Palmitoiltransferase/deficiência , Carnitina/análogos & derivados , Síndrome Congênita de Insuficiência da Medula Óssea/sangue , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo/sangue , Doenças Mitocondriais/sangue , Miopatias Mitocondriais/sangue , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares/sangue , Doenças do Sistema Nervoso/sangue , Rabdomiólise/sangue , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Cardiomiopatias/dietoterapia , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Carnitina/sangue , Carnitina/genética , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Terapia por Exercício , Jejum , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/terapia , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/sangue , Masculino , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Doenças Mitocondriais/dietoterapia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Miopatias Mitocondriais/dietoterapia , Miopatias Mitocondriais/patologia , Miopatias Mitocondriais/terapia , Proteína Mitocondrial Trifuncional/sangue , Doenças Musculares/dietoterapia , Doenças Musculares/patologia , Doenças Musculares/terapia , Doenças do Sistema Nervoso/dietoterapia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Rabdomiólise/dietoterapia , Rabdomiólise/patologia , Rabdomiólise/terapia
13.
Rev Neurol (Paris) ; 176(5): 380-386, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32253025

RESUMO

INTRODUCTION: Mitochondrial trifunctional protein deficiency (MTPD) is a long-chain fatty acid oxidation disorder characterized by co-existence of rhabdomyolysis episodes and peripheral neuropathy. Two phenotypes are described: generalized mitochondrial trifunctional protein deficiency (gMTPD) and isolated long-chain-3-hydroxyacyl-CoA dehydrogenase deficiency (iLCHADD) that is always associated with the c.1528G>C mutation. Peripheral neuropathy of MTPD is commonly described in children as axonal, length-dependent and sensorimotor. OBJECTIVES: To report clinical and electrophysiological features of four independent adult MTPD patients with peripheral neuropathy. RESULTS: Onset of the disease was characterized in all patients by rhabdomyolysis episodes occurring during childhood preceded by severe hypoglycemic episodes in three patients. Peripheral nerve involvement manifesting as sensory ataxia appeared later, during adolescence or adulthood. In all cases, electroneuromyogram showed no length-dependent sensory potentials decrease characteristic of sensory neuronopathy ("ganglionopathy"). All patients harbored at least one c.1528G>C mutation. DISCUSSION: We describe MTPD as a newly hereditary etiology of sensory neuronopathy in adults, specifically in patients with c.1528G>C mutation. MTPD should be screened for by performing plasma acylcarnitines in patients with chronic sensory neuronopathy and additional suggestive features such as exercise intolerance or retinopathy.


Assuntos
Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/diagnóstico , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/etiologia , Rabdomiólise/complicações , Rabdomiólise/diagnóstico , Adulto , Fatores Etários , Cardiomiopatias/patologia , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/patologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Rabdomiólise/patologia , Adulto Jovem
14.
Mol Cell Probes ; 44: 14-20, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30682426

RESUMO

The heterooctameric mitochondrial trifunctional protein (MTP), composed of four α- and ß-subunits harbours three enzymes that each perform a different function in mitochondrial fatty acid ß-oxidation. Pathogenic variants in the MTP genes (HADHA and HADHB) cause MTP deficiency, a rare autosomal recessive metabolic disorder characterized by phenotypic heterogeneity ranging from severe, early-onset, cardiac disease to milder, later-onset, myopathy and neuropathy. Since metabolic myopathies and neuropathies are a group of rare genetic disorders and their associated muscle symptoms may be subtle, the diagnosis is often delayed. Here we evaluated data of 161 patients with myopathy and 242 patients with neuropathy via next generation sequencing (NGS) and report the diagnostic yield in three patients of this cohort by the detection of disease-causing variants in the HADHA or HADHB gene. The mitigated phenotypes of this treatable disease were missed by the newborn screening, highlighting the importance of phenotype-based NGS analysis in patients with rare and clinically very variable disorders such as MTP deficiency.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Mutação/genética , Adolescente , Cardiomiopatias/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Erros Inatos do Metabolismo Lipídico/genética , Masculino , Miopatias Mitocondriais/genética , Proteína Mitocondrial Trifuncional/deficiência , Proteína Mitocondrial Trifuncional/genética , Doenças do Sistema Nervoso/genética , Fenótipo , Rabdomiólise/genética , Síndrome
15.
J Lipid Res ; 59(6): 967-973, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581157

RESUMO

Mitochondrial trifunctional protein (MTP) plays a critical role in the oxidation of long-chain fatty acids. We previously reported that aging mice (>9 months old) heterozygous for an MTP defect (MTP+/-) develop nonalcoholic fatty liver disease (NAFLD). We tested whether a high-fat diet (HFD) accelerates NAFLD in young MTP+/-mice, and whether overexpression of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 3 (SIRT3) deacetylates MTP and improves mitochondrial function and NAFLD. Three-month-old WT and MTP+/- mice were fed HFD (60% cal fat) for 16 weeks and livers were assessed for fatty acid oxidation (FAO) and NAFLD. Compared with WT, MTP+/- mice displayed reduced hepatic SIRT3 levels and reduced FAO, with increased hepatic steatosis and the inflammatory marker CD68. Hepatic overexpression of SIRT3 in HFD-fed MTP+/- mice increased hepatic MTP protein levels at the posttranscriptional level. Immunoprecipitation of MTP from liver mitochondria followed by Western blot with acetyl-lysine antibody showed higher acetylation of MTP in MTP+/- compared with WT mice. Overexpression of SIRT3 in MTP+/- mice significantly reduced the acetylation of MTP compared with ß-galactosidase controls, increased mitochondrial FAO, and reduced hepatic steatosis, CD68, and serum ALT levels. Taken together, our data indicate that deacetylation of MTP by SIRT3 improves mitochondrial function and rescues NAFLD in MTP+/- mice.


Assuntos
Proteína Mitocondrial Trifuncional/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Sirtuína 3/metabolismo , Triglicerídeos/metabolismo
16.
Clin Neuropathol ; 37(5): 232-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956646

RESUMO

Mitochondrial trifunctional protein deficiency (MTPD) is a rare disorder caused by mutations in the HADHA and HADHB genes. Here, we report on two Han Chinese patients with HADHB mutation-associated infantile axonal Charcot-Marie-Tooth disease (IACMT). Both patients were unrelated. Case 1 was a 19-year-old man, and case 2 was a 5-year-old boy. Both had delayed motor development and slowly-progressing distal muscle weakness with areflexia and foot deformities. The electrophysiology findings were compatible with axonal polyneuropathy in both patients. Blood tandem mass spectrometry showed increased concentrations of multiple acylcarnitines. Nerve biopsies showed axonal neuropathy with a moderate loss of myelinated fibers. Gene analysis identified two compound heterozygous mutations (c.184A>G/c.340A>G and c.488G>A/c.1175C>T, respectively) in the HADHB gene. The c.488G>A mutation was novel. This study broadens the phenotype of MTPD and suggests that the genetic testing of patients suffering from IACMT should include the HADHB gene.
.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Sequência de Aminoácidos , Povo Asiático , Axônios/patologia , Biópsia , Carnitina/análogos & derivados , Carnitina/metabolismo , Pré-Escolar , Análise Mutacional de DNA , Humanos , Masculino , Proteína Mitocondrial Trifuncional/deficiência , Mutação/genética , Polineuropatias/patologia , Nervo Sural/patologia , Adulto Jovem
17.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1292-1299, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28392417

RESUMO

BACKGROUND: Mitochondrial Trifunctional Protein deficiency (TFPD) is a severe genetic disease characterized by altered energy metabolism and accumulation of long-chain (LC) acylcarnitines in blood and tissues. This accumulation could impair the mitochondrial oxidative phosphorylation (OxPhos), contributing to the non-optimal outcome despite conventional diet therapy with medium-chain triglycerides (MCT). METHOD: Acylcarnitine and OxPhos parameters were measured in TFPD-fibroblasts obtained from 8 children and cultured in medium mimicking fasting (LCFA) or conventional treatment (MCT), with or without Etomoxir (ETX) an inhibitor of carnitine palmitoyltransferase 1 (CPT1) activity, and were compared to results obtained with fibroblasts from 5 healthy-control children. The effects of various acylcarnitines were also tested on control fibroblasts. RESULTS: In the LCFA-condition, TFPD-fibroblasts demonstrated a large accumulation of LC-acylcarnitines associated with decreased O2-consumption (63±3% of control, P<0.001) and ATP production (67±5%, P<0.001) without modification of coupling efficiency. A dose-dependent decrease in O2-consumption was reproduced in control fibroblasts by addition of increasing dose of LC-acylcarnitines, while it was almost preserved with MC-acylcarnitines. The MCT-condition reduced LC-acylcarnitine accumulation and partially improved O2-consumption (80±3%, P<0.01) in TFPD-fibroblasts. The addition of ETX in both LCFA- and MCT-conditions normalized acylcarnitine profiles and restored O2-consumption and ATP production at the same levels than control. CONCLUSION: Accumulation of LC-acylcarnitines plays a major role in the pathophysiology of TFPD, reducing OxPhos capacities. These deleterious effects could be partially prevented by MCT-therapy and totally corrected by ETX. Inhibition of CPT1 may be view as a new therapeutic target for patients with a severe form of TFPD.


Assuntos
Cardiomiopatias/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Compostos de Epóxi/farmacologia , Fibroblastos/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Rabdomiólise/metabolismo , Cardiomiopatias/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Feminino , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/patologia , Masculino , Mitocôndrias/patologia , Miopatias Mitocondriais/patologia , Proteína Mitocondrial Trifuncional/efeitos dos fármacos , Proteína Mitocondrial Trifuncional/metabolismo , Doenças do Sistema Nervoso/patologia , Rabdomiólise/patologia
18.
J Hum Genet ; 62(9): 809-814, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28515471

RESUMO

Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder of mitochondrial fatty-acid oxidation. Isolated long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is often reported in Caucasian countries due to a common mutation. However, the molecular and clinical basis of complete TFP deficiency has not been extensively reported. In this study, 14 Japanese cases (13 families) with complete TFP deficiency, including 9 previously reported cases, were analyzed to clarify the clinical and molecular characteristics of TFP deficiency. The clinical types of the 14 patients were as follows: 12 cases of neonatal (n=7) or myopathic (n=5) types and 2 cases of intermediate type. Peripheral neuropathy was found in four cases and hypocalcemia due to hypoparathyroidism, which is rarely reported in Caucasian patients, had developed in four cases. Maternal hemolysis, elevated liver enzymes and low platelet count syndrome and acute fatty liver of pregnancy were noted in two and one mothers, respectively. Fourteen mutations were identified in 26 alleles in Japanese patients, including two novel mutations (HADHA: c.361C>T, and HADHA-HADHB: g.26233880_ 26248855del), although no common mutations were found. This study suggests that the molecular and clinical aspects of Japanese patients with TFP deficiencies differ from those of Caucasian patients.


Assuntos
Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Rabdomiólise/diagnóstico , Rabdomiólise/genética , Adolescente , Povo Asiático/genética , Criança , Pré-Escolar , Ativação Enzimática , Família , Feminino , Testes Genéticos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Proteína Mitocondrial Trifuncional/genética , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Mutação , População Branca/genética
19.
J Inherit Metab Dis ; 40(6): 831-843, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28871440

RESUMO

BACKGROUND: Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. METHODS: A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. RESULTS: Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. CONCLUSIONS: C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT01379625.


Assuntos
Caprilatos/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Miopatias Mitocondriais/tratamento farmacológico , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/tratamento farmacológico , Rabdomiólise/tratamento farmacológico , Triglicerídeos/uso terapêutico , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adolescente , Adulto , Cardiomiopatias/metabolismo , Carnitina/metabolismo , Criança , Gorduras na Dieta/metabolismo , Método Duplo-Cego , Exercício Físico/fisiologia , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/metabolismo , Proteína Mitocondrial Trifuncional/metabolismo , Doenças do Sistema Nervoso/metabolismo , Oxirredução , Rabdomiólise/metabolismo , Adulto Jovem
20.
Biochim Biophys Acta ; 1847(6-7): 620-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25868874

RESUMO

Patients with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiency commonly present liver dysfunction whose pathogenesis is unknown. We studied the effects of long-chain 3-hydroxylated fatty acids (LCHFA) that accumulate in LCHAD deficiency on liver bioenergetics using mitochondrial preparations from young rats. We provide strong evidence that 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, the monocarboxylic acids that are found at the highest tissue concentrations in this disorder, act as metabolic inhibitors and uncouplers of oxidative phosphorylation. These conclusions are based on the findings that these fatty acids decreased ADP-stimulated (state 3) and uncoupled respiration, mitochondrial membrane potential and NAD(P)H content, and, in contrast, increased resting (state 4) respiration. We also verified that 3HTA and 3HPA markedly reduced Ca2+ retention capacity and induced swelling in Ca2+-loaded mitochondria. These effects were mediated by mitochondrial permeability transition (MPT) induction since they were totally prevented by the classical MPT inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca2+ uptake blocker. Taken together, our data demonstrate that the major monocarboxylic LCHFA accumulating in LCHAD deficiency disrupt energy mitochondrial homeostasis in the liver. It is proposed that this pathomechanism may explain at least in part the hepatic alterations characteristic of the affected patients.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/deficiência , Cardiomiopatias/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/farmacologia , Erros Inatos do Metabolismo Lipídico/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Miopatias Mitocondriais/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Doenças do Sistema Nervoso/patologia , Rabdomiólise/patologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Miopatias Mitocondriais/metabolismo , Proteína Mitocondrial Trifuncional/deficiência , NADP/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Rabdomiólise/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA