Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.576
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(22): 5608-5621.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34637701

RESUMO

Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.


Assuntos
Tronco Encefálico/metabolismo , Mecanorreceptores/metabolismo , Sinapses/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Optogenética , Pele/inervação
2.
Cell ; 172(5): 952-965.e18, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474921

RESUMO

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virologia , RNA/química , RNA/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Encefalopatias Metabólicas Congênitas/patologia , Tronco Encefálico/patologia , Encefalite Viral/genética , Escherichia coli/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Herpesvirus Humano 1 , Humanos , Interferons/metabolismo , Íntrons/genética , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Linhagem , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/deficiência , RNA Nucleotidiltransferases/genética , Receptor 3 Toll-Like/metabolismo , Replicação Viral
3.
Cell ; 163(7): 1783-1795, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687362

RESUMO

Touch perception begins with activation of low-threshold mechanoreceptors (LTMRs) in the periphery. LTMR terminals exhibit tremendous morphological heterogeneity that specifies their mechanical receptivity. In a survey of mammalian skin, we found a preponderance of neurofilament-heavy-chain(+) circumferential endings associated with hair follicles, prompting us to develop a genetic strategy to interrogate these neurons. Targeted in vivo recordings revealed them to be Aß field-LTMRs, identified 50 years ago but largely elusive thereafter. Remarkably, while Aß field-LTMRs are highly sensitive to gentle stroking of the skin, they are unresponsive to hair deflection, and they encode skin indentation in the noxious range across large, spotty receptive fields. Individual Aß field-LTMRs form up to 180 circumferential endings, making them the most anatomically expansive LTMR identified to date. Thus, Aß field-LTMRs are a major mammalian LTMR subtype that forms circumferential endings in hairy skin, and their sensitivity to gentle skin stroking arises through integration across many low-sensitivity circumferential endings.


Assuntos
Mecanorreceptores/metabolismo , Tato , Animais , Axônios/metabolismo , Tronco Encefálico/metabolismo , Fenômenos Eletrofisiológicos , Folículo Piloso/metabolismo , Filamentos Intermediários/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Pele/citologia , Pele/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
4.
Nature ; 625(7994): 345-351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057661

RESUMO

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Assuntos
Degeneração Lobar Frontotemporal , Fatores Associados à Proteína de Ligação a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Microscopia Crioeletrônica , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/ultraestrutura , Lobo Temporal/metabolismo , Lobo Temporal/patologia
5.
Nature ; 629(8014): 1133-1141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750368

RESUMO

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Assuntos
Maleato de Dizocilpina , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Masculino , Camundongos , Ratos , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
6.
Cell ; 152(3): 612-9, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374353

RESUMO

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.


Assuntos
Tronco Encefálico/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Pressão Sanguínea , Tronco Encefálico/citologia , Neurônios Colinérgicos/metabolismo , AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Canais KATP/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Sistema Nervoso Parassimpático/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Medula Espinal/metabolismo , Sistema Nervoso Simpático/metabolismo
7.
EMBO J ; 40(7): e106106, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33709453

RESUMO

A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.


Assuntos
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ataxias Espinocerebelares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Células HEK293 , Humanos , Camundongos , Fosforilação , Estabilidade Proteica , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Ataxias Espinocerebelares/genética , Fatores de Transcrição/genética
8.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
9.
Proc Natl Acad Sci U S A ; 119(33): e2206053119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939700

RESUMO

Rett syndrome is a neurological disease due to loss-of-function mutations in the transcription factor, Methyl CpG binding protein 2 (MECP2). Because overexpression of endogenous MECP2 also causes disease, we have exploited a targeted RNA-editing approach to repair patient mutations where levels of MECP2 protein will never exceed endogenous levels. Here, we have constructed adeno-associated viruses coexpressing a bioengineered wild-type ADAR2 catalytic domain (Editasewt) and either Mecp2-targeting or nontargeting gfp RNA guides. The viruses are introduced systemically into male mice containing a guanosine to adenosine mutation that eliminates MeCP2 protein and causes classic Rett syndrome in humans. We find that in the mutant mice injected with the Mecp2-targeting virus, the brainstem exhibits the highest RNA-editing frequency compared to other brain regions. The efficiency is sufficient to rescue MeCP2 expression and function in the brainstem of mice expressing the Mecp2-targeting virus. Correspondingly, we find that abnormal Rett-like respiratory patterns are alleviated, and survival is prolonged, compared to mice injected with the control gfp guide virus. The levels of RNA editing among most brain regions corresponds to the distribution of guide RNA rather than Editasewt. Our results provide evidence that a targeted RNA-editing approach can alleviate a hallmark symptom in a mouse model of human disease.


Assuntos
Tronco Encefálico , Proteína 2 de Ligação a Metil-CpG , Edição de RNA , Transtornos Respiratórios , Síndrome de Rett , Animais , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mutação , Transtornos Respiratórios/genética , Transtornos Respiratórios/terapia , Síndrome de Rett/genética , Síndrome de Rett/terapia
10.
Physiol Genomics ; 56(3): 283-300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145287

RESUMO

Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.


Assuntos
Hipertensão , Ratos , Feminino , Humanos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/metabolismo , Tronco Encefálico/metabolismo , Pressão Sanguínea/genética , Núcleo Solitário/metabolismo , Perfilação da Expressão Gênica
11.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L698-L712, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591125

RESUMO

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.


Assuntos
Hipóxia , Camundongos Endogâmicos C57BL , Neurônios , Oligodendroglia , Transcriptoma , Animais , Oligodendroglia/metabolismo , Camundongos , Masculino , Hipóxia/metabolismo , Hipóxia/genética , Neurônios/metabolismo , Neurônios/patologia , Tronco Encefálico/metabolismo
12.
J Neurophysiol ; 132(1): 108-129, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748514

RESUMO

µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.


Assuntos
Receptores da Neurocinina-1 , Receptores Opioides mu , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Receptores Opioides mu/metabolismo , Receptores Opioides mu/genética , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-1/genética , Camundongos , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Masculino , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Centro Respiratório/metabolismo , Centro Respiratório/efeitos dos fármacos
13.
J Neurochem ; 168(5): 663-676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439211

RESUMO

Neurons exhibit a high energetic need, and the question arises as how they metabolically adapt to changing activity states. This is relevant for interpreting functional neuroimaging in different brain areas. Particularly, neurons with a broad firing range might exhibit metabolic adaptations. Therefore, we studied MNTB (medial nucleus of the trapezoid body) principal neurons, which generate action potentials (APs) at frequencies up to several hundred hertz. We performed the experiments in acute brainstem slices of the Mongolian gerbil (Meriones unguiculatus) at 22.5-24.5°C. Upon electrical stimulation of afferent MNTB fibres with 400 stimuli at varying frequencies, we monitored autofluorescence levels of NAD(P)H and FAD and determined the extremum amplitudes of their biphasic response. Additionally, we compared these data with alterations in O2 concentrations measured with an electrochemical sensor. These O2 changes are prominent since MNTB neurons rely on oxidative phosphorylation as shown by our pharmacological experiments. We calculated the O2 consumption rate as change in O2 concentration divided by stimulus durations, because these periods varied inversely with stimulus frequency as a result of the constant number of 400 stimuli applied. The O2 consumption rate increased with stimulation frequency up to a constant value at 600 Hz; that is, energy demand depends on temporal characteristics of activity despite the same number of stimuli. The rates showed no correlation with peak amplitudes of NAD(P)H or FAD, whilst the values of the two molecules were linearly correlated. This points at the complexity of analysing autofluorescence imaging for quantitative metabolic studies, because these values report only relative net changes of many superimposed oxidative and reductive processes. Monitoring O2 concentration rates is, thus, an important tool to improve the interpretation of NAD(P)H/FAD autofluorescence data, as they do not under all conditions and in all systems appropriately reflect the metabolic activity or energy demand.


Assuntos
Tronco Encefálico , Gerbillinae , Neurônios , Animais , Neurônios/metabolismo , Neurônios/fisiologia , Tronco Encefálico/metabolismo , Consumo de Oxigênio/fisiologia , Potenciais de Ação/fisiologia , Masculino , Estimulação Elétrica , Flavina-Adenina Dinucleotídeo/metabolismo , Feminino , Corpo Trapezoide/fisiologia , Corpo Trapezoide/metabolismo , NADP/metabolismo
14.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38680020

RESUMO

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Assuntos
Progressão da Doença , Complexo I de Transporte de Elétrons , Interferon gama , Doença de Leigh , Animais , Camundongos , Tronco Encefálico/patologia , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Interferon gama/metabolismo , Doença de Leigh/patologia , Doença de Leigh/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Synapse ; 78(2): e22289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436644

RESUMO

Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.


Assuntos
Epilepsia , Animais , Feminino , Masculino , Ratos , Tronco Encefálico/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Hipocampo/metabolismo , Pentilenotetrazol , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Fator 6 Associado a Receptor de TNF/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Receptores de AMPA/genética , Córtex Cerebral/metabolismo
16.
Brain Behav Immun ; 119: 333-350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561095

RESUMO

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.


Assuntos
Animais Recém-Nascidos , Tronco Encefálico , Lipopolissacarídeos , Sepse Neonatal , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Sepse Neonatal/metabolismo , Tronco Encefálico/metabolismo , Receptor 1 Toll-Like/metabolismo , Lipopeptídeos/farmacologia , Respiração/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Astrócitos/metabolismo , Masculino , Ligantes , Microglia/metabolismo , Feminino , Inflamação/metabolismo
17.
Int J Legal Med ; 138(1): 207-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37338605

RESUMO

OBJECTIVE: Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS: A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and ß-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS: Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION: Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and ß-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida , Proteômica/métodos , Tronco Encefálico/metabolismo , Biomarcadores/metabolismo , Família 2 do Citocromo P450/metabolismo
18.
Cell ; 137(7): 1177-9, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563747

RESUMO

In the arcuate nucleus of the hypothalamus, neurons that produce the neuropeptides NPY and AgRP play a vital role in the maintenance of energy homeostasis. In this issue, Wu et al. (2009) show that these neurons modulate feeding behavior in mice by providing GABAergic input to the parabrachial nucleus in the brainstem.


Assuntos
Apetite , Ácido gama-Aminobutírico/metabolismo , Animais , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Camundongos , Neuropeptídeos/metabolismo , Ácido gama-Aminobutírico/genética
19.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737523

RESUMO

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431696

RESUMO

Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover's role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called "superprimed vesicles" while "normally primed" ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.


Assuntos
Exocitose/genética , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Fusão de Membrana/genética , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Neurotransmissores/genética , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA