RESUMO
PURPOSE: Pathogen transmission during cardio-pulmonary exercise testing (CPET) is caused by carrier aerosols generated during respiration. METHODS: Ten healthy volunteers (age range: 34 ± 15; 4 females) were recruited to see if the physiological reactions to ramp-incremental CPET on a cycle ergometer were affected using an in-line filter placed between the mouthpiece and the flow sensor. The tests were in random order with or without an in-line bacterial/viral spirometer filter. The work rate aligned, time interpolated 10 s bin data were compared throughout the exercise period. RESULTS: From rest to peak exercise, filter use increased only minute ventilation ([Formula: see text]E) (Δ[Formula: see text]E = 1.56 ± 0.70 L/min, P < 0.001) and tidal volume (VT) (ΔVT = 0.10 ± 0.11 L, P = 0.014). Over the entire test, the slope of the residuals for [Formula: see text]CO2 was positive (0.035 ± 0.041 (ΔL/L), P = 0.027). During a ramp-incremental CPET in healthy subjects, an in-line filter increased [Formula: see text]E and VT but not metabolic rate. CONCLUSION: In conclusion, using an in-line filter is feasible, does not affect appreciably the physiological variables, and may mitigate risk of aerosol dispersion during CPET.
Assuntos
Teste de Esforço , Respiração , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Voluntários Saudáveis , Exercício Físico/fisiologia , Volume de Ventilação Pulmonar , Consumo de Oxigênio/fisiologiaRESUMO
Gas exchange inefficiency and dynamic hyperinflation contributes to exercise limitation in chronic obstructive pulmonary disease (COPD). It is also characterized by an elevated fraction of physiological dead space (VD/VT). Noninvasive methods for accurate VD/VT assessment during exercise in patients are lacking. The current study sought to compare transcutaneous PCO2 (TcPCO2) with the gold standard-arterial PCO2 (PaCO2)-and other available methods (end tidal CO2 and the Jones equation) for estimating VD/VT during incremental exercise in COPD. Ten COPD patients completed a symptom limited incremental cycle exercise. TcPCO2 was measured by a heated electrode on the ear-lobe. Radial artery blood was collected at rest, during unloaded cycling (UL) and every minute during exercise and recovery. Ventilation and gas exchange were measured breath-by-breath. Bland-Altman analysis examined agreement of PCO2 and VD/VT calculated using PaCO2, TcPCO2, end-tidal PCO2 (PETCO2) and estimated PaCO2 by the Jones equation (PaCO2-Jones). Lin's Concordance Correlation Coefficient (CCC) was assessed. 114 measurements were obtained from the 10 COPD subjects. The bias between TcPCO2 and PaCO2 was 0.86 mmHg with upper and lower limit of agreement ranging -2.28 mmHg to 3.99 mmHg. Correlation between TcPCO2 and PaCO2 during rest and exercise was r2=0.907 (p < 0.001; CCC = 0.941) and VD/VT using TcPCO2 vs. PaCO2 was r2=0.958 (p < 0.0001; CCC = 0.967). Correlation between PaCO2-Jones and PETCO2 vs. PaCO2 were r2=0.755, 0.755, (p < 0.001; CCC = 0.832, 0.718) and for VD/VT calculation (r2=0.793, 0.610; p < 0.0001; CCC = 0.760, 0.448), respectively. The results support the accuracy of TcPCO2 to reflect PaCO2 and calculate VD/VT during rest and exercise, but not in recovery, in COPD patients, enabling improved accuracy of noninvasive assessment of gas exchange inefficiency during incremental exercise testing.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Dióxido de Carbono , Exercício Físico , Teste de Esforço , Humanos , Troca Gasosa Pulmonar , Volume de Ventilação PulmonarRESUMO
Exercise intolerance in chronic obstructive pulmonary disease (COPD) is associated with dyspnea, reduced inspiratory capacity (IC) and occurs with a neuromuscular "power reserve," i.e., an acute ability to increase isokinetic locomotor power. This power reserve is associated with resting forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) suggesting that treatments to target pulmonary function may protect neuromuscular performance and extend whole body exercise in COPD. We, therefore, tested whether combination long-acting ß-agonist and muscarinic antagonist bronchodilator therapy [long-acting muscarinic antagonist (LAMA) + long-acting ß-agonist (LABA); Stiolto Respimat] would ameliorate the decline in neuromuscular performance and increase endurance time during constant power cycling at 80% peak incremental power. Fourteen patients with COPD (4 female; 64 [58, 72] yr; FEV1 67% [56%, 75%] predicted; median [25th, 75th percentile]) participated in a randomized, placebo-controlled crossover trial (NCT02845752). Pulmonary function and cardiopulmonary exercise responses were assessed before and after 1 wk of treatment, with 2 wk washout between conditions. Performance fatigue was assessed using an â¼4-s maximal isokinetic cycling effort at preexercise, isotime, and intolerance. Isotime was the shorter exercise duration of the two treatment conditions. Significance was assessed using ANOVA with treatment as fixed factor and subject as random factor. FEV1 was greater with LAMA + LABA versus placebo (1.81 [1.58, 1.98] L vs. 1.72 [1.29, 1.99] L; P = 0.006), but IC at isotime, performance fatigue at isotime, and constant power endurance time were not different between conditions (each P > 0.05). A modest (â¼95 mL) increase in FEV1 following 1 wk of combination LAMA + LABA treatment did not alleviate neuromuscular performance fatigue or enhance cycle exercise tolerance in patients with mild-to-severe COPD with largely preserved "static" lung volumes.NEW & NOTEWORTHY Bronchodilation is known to increase forced expiratory volume in 1 s (FEV1) and reduce hyperinflation in COPD. In a randomized controlled trial, we investigated whether combined inhaled long-acting ß-agonist and muscarinic antagonist would alleviate maximal voluntary neuromuscular performance fatigue or enhance maximal muscle activation during cycling in patients with COPD. Despite increased FEV1, combination bronchodilator therapy did not reduce neuromuscular performance fatigue or enhance muscle activity or exercise tolerance in patients with mild-to-severe COPD.
Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Benzoxazinas , Broncodilatadores/farmacologia , Estudos Cross-Over , Combinação de Medicamentos , Fadiga , Feminino , Humanos , Masculino , Antagonistas Muscarínicos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Brometo de TiotrópioRESUMO
Assessing airway function during exercise provides useful information regarding mechanical properties of the airways and the extent of ventilatory limitation in COPD. The primary aim of this study was to use impulse oscillometry (IOS) to assess dynamic changes in airway impedance across a range of exercise intensities in patients with GOLD 1-4, before and after albuterol administration. A secondary aim was to assess the reproducibility of IOS measures during exercise. Fifteen patients with COPD (8 males/7 females; age = 66 ± 8 yr; prebronchodilator FEV1 = 54.3 ± 23.6%Pred) performed incremental cycle ergometry before and 90 min after inhaled albuterol. Pulmonary ventilation and gas exchange were measured continuously, and IOS-derived indices of airway impedance were measured every 2 min immediately preceding inspiratory capacity maneuvers. Test-retest reproducibility of exercise IOS was assessed as mean difference between replicate tests in five healthy subjects (3 males/2 females). At rest and during incremental exercise, albuterol significantly increased airway reactance (X5) and decreased airway resistance (R5, R5-R20), impedance (Z5), and end-expiratory lung volume (60% ± 12% vs. 58% ± 12% TLC, main effect P = 0.003). At peak exercise, there were moderate-to-strong associations between IOS variables and IC, and between IOS variables and concavity in the expiratory limb of the spontaneous flow-volume curve. Exercise IOS exhibited moderate reproducibility in healthy subjects which was strongest with R5 (mean diff. = -0.01 ± 0.05 kPa/L/s; ICC = 0.68), R5-R20 (mean diff. = -0.004 ± 0.028 kPa/L/s; ICC = 0.65), and Z5 (mean diff. = -0.006 ± 0.021 kPa/L/s; ICC = 0.69). In patients with COPD, exercise evoked increases in airway resistance and decreases in reactance that were ameliorated by inhaled bronchodilators. The technique of exercise IOS may aid in the clinical assessment of dynamic airway function during exercise.NEW & NOTEWORTHY This study provides a novel, mechanistic insight into dynamic airway function during exercise in COPD, before and after inhaled bronchodilators. The use of impulse oscillometry (IOS) to evaluate airway function is unique among exercise studies. We show strong correlations among IOS variables, dynamic hyperinflation, and shape-changes in the spontaneous expiratory flow-volume curve. This approach may aid in the clinical assessment of airway function during exercise.
Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Idoso , Resistência das Vias Respiratórias , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Oscilometria , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Reprodutibilidade dos Testes , EspirometriaRESUMO
INTRODUCTION: Skeletal muscle atrophy, weakness, mitochondrial loss, and dysfunction are characteristics of chronic obstructive pulmonary disease (COPD). It remains unclear whether muscle dysfunction occurs in both upper and lower limbs, because findings are inconsistent in the few studies where upper and lower limb muscle performance properties were compared within an individual. This study determined whether muscle oxidative capacity is low in upper and lower limbs of COPD patients compared with controls. METHODS: Oxidative capacity of the forearm and medial gastrocnemius was measured using near-infrared spectroscopy to determine the muscle O2 consumption recovery rate constant (k, min) in 20 COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2/3/4, n = 7/7/6) and 20 smokers with normal spirometry (CON). Muscle k is linearly proportional to oxidative capacity. Steps per day and vector magnitude units per minute (VMU·min) were assessed using triaxial accelerometry. Differences between group and limb were assessed by two-way ANOVA. RESULTS: There was a significant main effect of group (F = 11.2, ηp = 0.13, P = 0.001): k was lower in both upper and lower limb muscles in COPD (1.01 ± 0.17 and 1.05 ± 0.24 min) compared with CON (1.29 ± 0.49 and 1.54 ± 0.60 min). There was no effect on k of limb (F = 1.8, ηp = 0.02, P = 0.18) or group-limb interaction (P = 0.35). (VMU·min) was significantly lower in COPD (-38%; P = 0.042). Steps per day did not differ between COPD (4738 ± 3194) and CON (6372 ± 2107; P = 0.286), although the difference exceeded a clinically important threshold (>600-1100 steps per day). CONCLUSIONS: Compared with CON, muscle oxidative capacity was lower in COPD in both upper (-20%) and lower (-30%) limbs. These data suggest that mitochondrial loss in COPD is not isolated to locomotor muscles.