Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(8): 086701, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898102

RESUMO

Conventional approaches for lattice dynamics based on static interatomic forces do not fully account for the effects of time-reversal-symmetry breaking in magnetic systems. Recent approaches to rectify this involve incorporating the first-order change in forces with atomic velocities under the assumption of adiabatic separation of electronic and nuclear degrees of freedom. In this Letter, we develop a first-principles method to calculate this velocity-force coupling in extended solids and show via the example of ferromagnetic CrI_{3} that, due to the slow dynamics of the spins in the system, the assumption of adiabatic separation can result in large errors for splittings of zone-center chiral modes. We demonstrate that an accurate description of the lattice dynamics requires treating magnons and phonons on the same footing.

2.
Phys Rev Lett ; 128(9): 095901, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302830

RESUMO

In insulators, Born effective charges describe the electrical polarization induced by the displacement of individual atomic sublattices. Such a physical property is at first sight irrelevant for metals and doped semiconductors, where the macroscopic polarization is ill defined. Here we show that, in clean conductors, going beyond the adiabatic approximation results in nonadiabatic Born effective charges that are well defined in the low-frequency limit. In addition, we find that the sublattice sum of the nonadiabatic Born effective charges does not vanish as it does in the insulating case, but instead is proportional to the Drude weight. We demonstrate these formal results with density functional perturbation theory calculations of Al and electron-doped SnS_{2} and SrTiO_{3}.

3.
Nature ; 488(7413): 603-8, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22932384

RESUMO

Light-matter interactions are ubiquitous, and underpin a wide range of basic research fields and applied technologies. Although optical interactions have been intensively studied, their microscopic details are often poorly understood and have so far not been directly measurable. X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale probe of optical interactions but has not yet been observed owing to a lack of sufficiently intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically induced charges and associated microscopic fields that arise in an illuminated material. To within the experimental errors, the measured efficiency is consistent with first-principles calculations of microscopic optical polarization in diamond. The ability to probe optical interactions on the atomic scale offers new opportunities in both basic and applied areas of science.

4.
Nano Lett ; 16(11): 6787-6791, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704855

RESUMO

We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

5.
Phys Rev Lett ; 117(1): 016804, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419583

RESUMO

We study by first-principles calculations a densely packed island of organic molecules (F_{4}TCNQ) adsorbed on graphene. We find that with electron doping the island naturally forms a p-n junction in the graphene sheet. For example, a doping level of ∼3×10^{13} electrons per cm^{2} results in a p-n junction with an 800 meV electrostatic potential barrier. Unlike in a conventional p-n junction in graphene, in the case of the junction formed by an adsorbed organic molecular island we expect that the Klein tunneling is inhibited, even without an applied external magnetic field. Here Klein tunneling is inhibited by the ferromagnetic order that spontaneously occurs in the molecular island upon doping. We estimate that the magnetic barrier in the graphene sheet is around 10 mT.

6.
J Phys Condens Matter ; 36(31)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653316

RESUMO

We study the magneto-optical properties of Fe-Co-Al ordered alloys in the terahertz range of frequencies. Using the standard Kubo-based approach to compute intrinsic part of theσxy(ω)we find a strong dependence ofσxyonωin the terahertz range. For example, we find that below 10 THz Co3Al has nearly constantσxyand that above 10 THz it is reduced by about 50 times. Furthermore, we find a strong dependence ofσxyon the chemical composition. For example, we find that the addition of Al to Fe changes the sign ofσxy, while the addition of Co to Fe leads to a nonmonotonic dependence ofσxyon Co concentration.

7.
Phys Rev Lett ; 110(18): 185901, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683222

RESUMO

Under the application of electrical currents, metal nanocrystals inside carbon nanotubes can be bodily transported. We examine experimentally and theoretically how an iron nanocrystal can pass through a constriction in the carbon nanotube with a smaller cross-sectional area than the nanocrystal itself. Remarkably, through in situ transmission electron imaging and diffraction, we find that, while passing through a constriction, the nanocrystal remains largely solid and crystalline and the carbon nanotube is unaffected. We account for this behavior by a pattern of iron atom motion and rearrangement on the surface of the nanocrystal. The nanocrystal motion can be described with a model whose parameters are nearly independent of the nanocrystal length, area, temperature, and electromigration force magnitude. We predict that metal nanocrystals can move through complex geometries and constrictions, with implications for both nanomechanics and tunable synthesis of metal nanoparticles.

8.
Phys Rev Lett ; 108(24): 246103, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004295

RESUMO

We present a systematic Raman study of unconventionally stacked double-layer graphene, and find that the spectrum strongly depends on the relative rotation angle between layers. Rotation-dependent trends in the position, width and intensity of graphene 2D and G peaks are experimentally established and accounted for theoretically. Our theoretical analysis reveals that changes in electronic band structure due to the interlayer interaction, such as rotational-angle dependent Van Hove singularities, are responsible for the observed spectral features. Our combined experimental and theoretical study provides a deeper understanding of the electronic band structure of rotated double-layer graphene, and leads to a practical way to identify and analyze rotation angles of misoriented double-layer graphene.

9.
Phys Rev Lett ; 106(23): 235502, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770519

RESUMO

Using first-principles density functional theory calculations, we discover an anomalously large biaxial strain-induced octahedral rotation axis reorientation in orthorhombic perovskites with tendency towards rhombohedral symmetry. The transition between crystallographically equivalent (isosymmetric) structures with different octahedral rotation magnitudes originates from strong strain-octahedral rotation coupling available to perovskites and the energetic hierarchy among competing octahedral tilt patterns. By elucidating these criteria, we suggest many functional perovskites would exhibit the transition in thin film form, thus offering a new landscape in which to tailor highly anisotropic electronic responses.

10.
Adv Mater ; 32(28): e2000855, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32490583

RESUMO

Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic-like behavior of the c lattice parameter in the AlB2 -type solid solution Cr1- x Mox B2 (x = 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2 SO4 solution are reported. The activity increases with increasing x, reaching its maximum at x = 0.6 before decreasing again. At high current densities, Cr0.4 Mo0.6 B2 outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm-2 current density. Cr0.4 Mo0.6 B2 has excellent long-term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First-principles calculations have correctly reproduced the nonlinear dependence of the c lattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently for x = 0.6, supporting the experimental results.

11.
Nat Commun ; 8: 14176, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120823

RESUMO

While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W-1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.

12.
J Phys Condens Matter ; 27(42): 422001, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26440802

RESUMO

We calculate the local density of states of two prototypical topological insulators (Bi2Se3 and Bi2Te2Se) as a function of distance from the surface within density functional theory. We find that, in the absence of disorder or doping, there is a 2 nm thick surface dipole the origin of which is the occupation of the topological surface states above the Dirac point. As a consequence, the bottom of the conduction band is bent upward by about 75 meV near the surface, and there is a hump-like feature associated with the top of the valence band. We expect that band bending will occur in all pristine topological insulators as long as the Fermi level does not cross the Dirac point. Our results show that topological insulators are intrinsic Schottky barrier solar cells.

13.
J Phys Condens Matter ; 27(33): 335504, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26241358

RESUMO

The calculated specific heat of optimally K-doped BaFe2As2 in density functional theory is about five times smaller than that found in the experiment. We report that by adjusting the potential on the iron atom to be slightly more repulsive for electrons improves the calculated heat capacity as well as the electronic band structure of Ba0.6K0.4Fe2As2. In addition, structural and magnetic properties are moved in the direction of experimental values. Applying the same correction to the antiferromagnetic state, we find that the electron-phonon coupling is strongly enhanced.

14.
ACS Nano ; 9(12): 12168-73, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26482218

RESUMO

We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy.

15.
Nat Commun ; 4: 2723, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24177166

RESUMO

The atomic structure of graphene edges is critical in determining the electrical, magnetic and chemical properties of truncated graphene structures, notably nanoribbons. Unfortunately, graphene edges are typically far from ideal and suffer from atomic-scale defects, structural distortion and unintended chemical functionalization, leading to unpredictable properties. Here we report that graphene edges fabricated by electron beam-initiated mechanical rupture or tearing in high vacuum are clean and largely atomically perfect, oriented in either the armchair or zigzag direction. We demonstrate, via aberration-corrected transmission electron microscopy, reversible and extended pentagon-heptagon (5-7) reconstruction at zigzag edges, and explore experimentally and theoretically the dynamics of the transitions between configuration states. Good theoretical-experimental agreement is found for the flipping rates between 5-7 and 6-6 zigzag edge states. Our study demonstrates that simple ripping is remarkably effective in producing atomically clean, ideal terminations, thus providing a valuable tool for realizing atomically tailored graphene and facilitating meaningful experimental study.

16.
Phys Rev Lett ; 102(10): 107603, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392162

RESUMO

We extend the Berry-phase concept of polarization to insulators having a nonzero value of the Chern invariant. The generalization to such Chern insulators requires special care because of the partial occupation of chiral edge states. We show how the integrated bulk current arising from an adiabatic evolution can be related to a difference of bulk polarizations. We also show how the surface charge can be related to the bulk polarization, but only with a knowledge of the wave vector at which the occupancy of the edge state is discontinuous. Furthermore, we present numerical calculations on a model Hamiltonian to provide additional support for our analytic arguments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA