RESUMO
Background and objective: E6 and E7 proteins in human papillomavirus (HPV) 16 are major oncogenes in several types of tumors, including lung cancer. Previous studies have demonstrated that both E6 and E7 oncoproteins can upregulate GLUT1 protein and mRNA expression levels in lung cancer cells. Thus, the present study aimed to investigate the main differences in the molecular mechanisms of GLUT1 expression regulated by E6 and E7. Methods: The double directional genetic manipulation and immunofluorescence were performed to explore the molecular mechanism of E6 or E7 upregulating the expression of GLUT1 in H1299 and A549 cell lines. Results: The overexpression of E6 in well-established lung cancer cell lines upregulated thioredoxin (Trx) protein expression. Notably, plasmid transfection or small interfering RNA transfection with E7 had no regulatory effect on Trx expression. As an important disulfide reductase of the intracellular antioxidant system, Trx plays important role in maintaining oxidative stress balance and protecting cells from oxidative damage. The overexpression of Trx increased the activation of NF-κB by upregulating p65 expression and promoting p65 nuclear translocation, and further upregulated GLUT1 protein and mRNA expression levels. The results of the present study demonstrated that E6, but not E7, upregulated GLUT1 expression in lung cancer cells by activating NF-κB due to the participation of Trx. Conclusion: These results suggest that Trx plays an important role in the pathogenesis of HPV-associated lung cancer, and propose a novel therapeutic target for HPV-associated lung cancer.
Assuntos
Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Papillomavirus Humano 16 , Neoplasias Pulmonares/etiologia , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Proteínas Repressoras/metabolismo , Tiorredoxinas/genética , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Transportador de Glucose Tipo 1/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologiaRESUMO
BACKGROUND: The E6 and E7 proteins in human papillomavirus 16 (HPV 16) are the main oncogenes in the occurrence of lung cancer. In recent studies, we found that E6 and E7 downregulated the expression of LKB1 in lung cancer cells. However, it is still unclear how E6 and E7 regulate LKB1 in lung cancer cells. METHODS: Double directional genetic manipulation and nuclear plasma separation technology were performed to explore the molecular mechanism of E6 and E7 inhibiting the antitumor activity of LKB1 in well-established lung cancer cell lines. RESULTS: E6 but not E7 significantly downregulated the expression of tumor suppressor KIF7 at protein level, and the inhibition of KIF7 further reduced the expression of LKB1 both in the nuclei and in the cytoplasm, whereas reduced the expression of p-LKB1 in the cytoplasm only. This suggested that HPV 16 E6 but not E7 downregulates the antitumor activity of LKB1 by downregulating the expression of p-LKB1 in the cytoplasm only. CONCLUSIONS: Here, we demonstrated for the first time that E6 but not E7 inhibits the antitumor activity of LKB1 in lung cancer cells by downregulating the expression of KIF7. Our findings provide new evidence to support the important role of KIF7 in the pathogenesis of lung cancer and suggests new therapeutic targets.
Assuntos
Papillomavirus Humano 16/metabolismo , Cinesinas/biossíntese , Neoplasias Pulmonares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/virologia , Masculino , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , TransfecçãoRESUMO
BACKGROUND: HPV16 E6/E7 proteins are the main oncogenes and only long-term persistent infection causes lung cancer. Our previous studies have shown that HPV16 E6/E7 protein up-regulates the expression of GLUT1 in lung cancer cells. However, whether E6 and E7 protein can promote the glucose uptake of GLUT1 and its molecular mechanism are unclear. METHODS: The regulatory relationships of E6 or E7, miR-451, CAB39, PI3K/AKT, and GLUT1 were detected by double directional genetic manipulations in lung cancer cell lines. Immunofluorescence and flow cytometry were used to detect the effect of CAB39 on promoting the translocation to the plasma membrane of GLUT1. Flow cytometry and confocal microscopy were performed to detect the glucose uptake levels of GLUT1. RESULTS: The overexpression both E6 and E7 proteins significantly down-regulated the expression level of miR-451, and the loss of miR-451 further up-regulated the expression of its target gene CAB39 at both protein and mRNA levels. Subsequently, CAB39 up-regulated the expression of GLUT1 at both protein and mRNA levels. Our results demonstrated that HPV16 E6/E7 up-regulated the expression and activation of GLUT1 through the HPV-miR-451-CAB39-GLUT1 axis. More interestingly, we found that CAB39 prompted GLUT1 translocation to the plasma membrane and glucose uptake, and this promotion depended on the PI3K/AKT pathway. CONCLUSION: Our findings provide new evidence to support the critical roles of miR-451 and CAB39 in the pathogenesis of HPV-related lung cancer.
RESUMO
Chronic infection of HPV16 E6/E7 is frequently associated with lung cancers, especially in non-smokers and in Asians. In our previous studies, we found that HPV16 E6/E7 up-regulated HIF-1α at protein level and further up-regulated GLUT1 at both protein and mRNA levels in well-established lung cancer cell lines. In one of our further mechanism study, the results demonstrated that HPV16 E6/E7 up-regulated the expression of GLUT1 through HPV-LKB1-HIF-1α-GLUT1 axis. However, there are multiple pathways involved in HPV16 E6/E7 regulation of HIF-1α expression. In current study, using double directional genetic manipulation in well-established lung cancer cell lines, we showed that both E6 and E7 down-regulated the expression of RRAD at both protein and mRNA levels. Like LKB1, RRAD is one of the cancer suppressor genes. The loss of RRAD further activated NF-κB by promoted cytoplasmic p65 translocated to nucleus, and up-regulated the expression level of the p-p65 in nucleus. Furthermore, p-p65 up regulated HIF-1α and GLUT1 at both protein and mRNA levels. Thus, we proposed HPV16 E6/E7 up-regulated the expression of GLUT1 through HPV-RRAD-p65- HIF-1α- GLUT1 axis. In conclusion, we demonstrated for the first time that E6 and E7 promoted the expression of HIF-1α and GLUT1 by relieving the inhibitory effect of RRAD which resulted in the activation of NF-κB by promoting cytoplasmic p65 translocated to nucleus, and up-regulated the expression of the p-p65 in nucleus in lung cancer cells. Our findings provided new evidence to support the critical role of RRAD in the pathogenesis of HPV-related lung cancer, and suggested novel therapeutic targets.